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Abstract

It is frequently hypothesised that high soil fungal/bacterial ratios are indicative for more sustainable agricultural systems. Increased

F=B ratios have been reported in extensively managed grasslands. To determine the shifts in fungal/bacterial biomass ratio as influenced

by grassland management and to find relations with nitrogen leaching potential, we sampled a two-year-old field experiment at an

organic experimental farm in the eastern part of The Netherlands. The effect of crop (grass and grass-clover), N application rate (0, 40,

80, 120 kgNha�1) and manure type (no manure, farm yard manure and slurry) on the F=B ratio within three growing seasons was tested,

as well as relations with soil and crop characteristics, nitrate leaching and partial N balance. Biomass of fungi and bacteria was calculated

after direct counts using epifluorescence microscopy. Fungal and bacterial biomass and the F=B ratio were higher in grass than in grass-

clover. The F=B ratio decreased with increasing N application rate and multiple regression analysis revealed a negative relationship with

pH. Bacterial activity (measured as incorporation of [3H]thymidine and [14C]leucine into bacterial DNA and proteins) showed the exact

opposite: an increase with N application rate and pH. Leaching increased with N application rate and was higher in grass-clover than in

grass. Partial N balance was more positive at a higher N application rate and showed an inverse relationship with fungal biomass and

F=B ratio. We conclude that the fungal/bacterial biomass ratio quickly responded to changes in management. Grasslands with higher N

input showed lower F=B ratios. Grass-clover had a smaller fungal biomass and higher N leaching than grass. In general, a higher fungal

biomass indicated a lower nitrogen leaching and a more negative partial N balance (or smaller N surplus), but more observations are

needed to confirm the relationship between F=B ratio and sustainability.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Organic matter plays a key role in many soil processes
because it affects, among others, soil structure, nutrient
dynamics and soil life. Decomposition of soil organic
matter is a highly important process. The rate of
decomposition depends on environmental conditions (e.g.
temperature, moisture conditions), on the quality (e.g. C/N
ratio) of the substrate and on the characteristics of the
e front matter r 2006 Elsevier Ltd. All rights reserved.
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decomposing organisms and their predators (i.e. C/N ratio,
growth efficiency) (Bloem et al., 1997; Swift et al., 1979).
The main decomposition pathways in soil are either

bacterial-based or fungal-based. Both bacteria and fungi
support their own chain of soil fauna (De Ruiter et al.,
1993; Wardle and Lavelle, 1997). Therefore, the biomass of
fungi compared to bacteria can be considered as an
indicator for the activity of two pathways of the soil food
web, formed by fungivores or bacterivores and their
predators, respectively.
Generally, fungal biomass is found to be greater than

bacterial biomass in agricultural soils (Anderson and
Domsch, 1975; Sakamoto and Oba, 1994; Schnurer et al.,
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1986; Zelles et al., 1995). In The Netherlands, however,
analyses of soil samples from conventionally managed
arable as well as grassland soils have shown that the soil
microbial biomass is usually strongly dominated by
bacteria (Bloem et al., 1994; Hassink et al., 1993; Velvis,
1997). Less than 20% of the soil microbial biomass in these
soils consists of fungi. Consequently, the soil fauna is
dominated by bacterivores and their predators (De Ruiter
et al., 1993). Recent analyses of more extensively managed
Dutch grasslands show a much higher contribution of
fungi to the microbial biomass (50–80%) (Bloem et al.,
2004).

Increased fungal/bacterial ðF=BÞ biomass ratios in
extensively managed grasslands are consistent with recent
other reports (Bailey et al., 2002; Bardgett and McAlister,
1999; Donnison et al., 2000; Grayston et al., 2001; Zeller
et al., 2001). The mechanisms responsible for shifts in the
soil microbial community remain largely unknown. Some
studies have shown that on arable land soil management
affects the F=B biomass ratio (Beare et al., 1997; Frey
et al., 1999). In most cases bacteria dominate under
conventional tillage, whereas fungi dominate under no-
tillage. This has been attributed to a direct contact between
bacteria and substrate under conventional tillage, encoura-
ging bacterial growth (Beare et al., 1997). Also, mycelial
networks are destroyed by tillage. The effect of ‘‘tillage’’
(cultivation or slit injection of slurry) on fungal/bacterial
biomass ratios in grasslands has not been investigated.
Grazing has been reported to have either a positive
(Bardgett et al., 1997) or a negative impact (Ghani et al.,
2003) on the F=B ratio. Shifts in the F=B ratio related to
grassland management have so far been attributed to
quantity (Mawdsley and Bardgett, 1997) and quality
(Grayston et al., 2001) of root exudates, changes in quality
and quantity of litter or input of animal faeces (Bardgett
et al., 1996) and plant productivity and composition
(Donnison et al., 2000). F=B ratios may also be affected
by other factors, e.g. toxic metals (Tobor-Kaplon et al.,
2005). Most of these factors are related to nutrient
availability. Bittman et al. (2005) found a decreasing
fungal biomass as a consequence of application of manure
and fertiliser. Inorganic nitrogen fertilisation has been
reported to reduce the F=B biomass ratio (Bardgett et al.,
1999b; Bloem et al., 2004), while organic matter with a high
C/N ratio stimulates fungal growth and thus increases the
F=B ratio (Alexander, 1977; Henriksen and Breland, 1999;
Vinten et al., 2002). pH has been seen to have either a
positive or a negative effect on F=B ratio (Bååth and
Anderson, 2003; Blagodatskaya and Anderson, 1998).

Higher fungal/bacterial ðF=BÞ biomass ratios are sug-
gested to be indicative for a more sustainable agroecosys-
tem with lower impact on the environment, in which
organic matter decomposition and N mineralisation
dominate the provision of plant nutrients for crop growth
(Bardgett and McAlister, 1999; Bardgett et al., 1999a;
Beare et al., 1992; Yeates et al., 1997). Because of the
higher C/N ratio of fungi compared to bacteria (10 vs. 4),
grazing by fungivores results in a lower N mineralisation
rate than grazing by bacterivores. In addition, fungal-
feeding fauna generally have a smaller biomass and lower
turnover rates than bacterial-feeding fauna (Didden et al.,
1994; Zwart et al., 1994). A fungi-dominated food web may
therefore result in a lower N-mineralisation rate. This,
however, does not necessarily lead to a lower crop
production. The biomass of mycorrhizal fungi probably
increases at lower soil nutrient contents (Mäder et al., 2000;
Smith and Read, 1997). Their contribution to nutrient
uptake may counterbalance the negative effects of a low
nutrient availability to the crop and thus reduce nutrient
losses to the environment (Jeffries and Barea, 1994; Smith
and Read, 1997).
If an increased F=B biomass ratio has a positive effect on

crop nutrient uptake efficiency and nutrient retention it is
desirable to get a handle on management practices and soil
properties that increase this ratio. The aim of this study
was, therefore, to find out which management practices
and soil characteristics affect the F=B biomass ratio in a
Dutch grassland agroecosystem, and whether the F=B ratio
can be used as an indicator for a system with low nutrient
losses.
We hypothesise an increased fungal biomass and/or F=B

ratio: (1) at lower availability of inorganic N; (2) as a
consequence of application of manure with higher C/N
ratio; (3) when farmyard manure is applied superficially
compared to slit injection of slurry. We furthermore
hypothesise that a higher F=B ratio reduces N leaching
potential. We evaluate factors related to fertiliser regime
and management, i.e. plant species composition and
organic matter characteristics together with pH as pre-
dictors for the F=B biomass ratio or fungal and bacterial
biomass alone.

2. Materials and methods

2.1. Sampling site

A field trial was done in a pasture of the organic
experimental farm ‘‘Aver Heino’’ at Heino in the eastern
part of The Netherlands (52�250 north and 6�150 east),
which was sown with a grass-clover mixture in 1997. After
a period of grazing and mowing the field trial was
established in 2001. The humid sandy soil was classified
as a gleyey sand with a semi-permeable loam horizon at
70–80 cm.
The trial consisted of seven rows, corresponding to

three manure treatments: no manure (one row), farm
yard manure (three rows) and slurry (three rows). The
three rows of farm yard manure and slurry received
manure at three different N application rates: 40, 80 and
120 kgNha�1. Each of the seven rows was subdivided into
nine subplots which differed in crop: grass (Lolium perenne

L.) or grass-clover (Lolium perenne L. and Trifolium

repens L.). Dimensions of the subplots were 15m� 2:7m,
bordered by a 0.3m bufferzone. In each row a number of
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Table 1

Treatments of the field trial

Crop Treatment n Manure type and application N total

ðkgha�1 y�1Þ

P2O5 total

ðkgha�1 y�1Þ

K2O total

ðkgha�1 y�1Þ

Grass-clover No manure 4 No 0 107 372

FYM 40 4 Farm yard manure, superficial 40 107 372

FYM 80 4 Farm yard manure, superficial 80 107 372

FYM 120 4 Farm yard manure, superficial 120 107 372

Slurry 40 4 Slurry, injection 40 107 372

Slurry 80 4 Slurry, injection 80 107 372

Slurry 120 4 Slurry, injection 120 107 372

Grass No manure 4 No 0 122 487

Slurry 40 2 Slurry, injection 40 122 487

Slurry 80 2 Slurry, injection 80 122 487

Slurry 120 2 Slurry, injection 120 122 487
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subplots was sampled. For a detailed overview of treat-
ments see Table 1. Growth of white clover in grass plots
was inhibited by the herbicide Starane.

The C/N ratio of the farm yard manure was 12.3
and of the slurry 6.8. All plots received potassium and
phosphorus additionally at a rate of 107 kgP2O5 ha

�1 and
372 kgK2Oha�1 for grass-clover and 122 kg P2O5 ha

�1 and
487 kgK2Oha�1 for grass. Farm yard manure was applied
superficially while slurry was applied through slit injection.
Both were applied in spring.

2.2. Soil and crop characteristics

Soil samples were collected in October 2003, three
growing seasons after establishment of the trial. For each
plot a bulk sample of 30 cores (0–10 cm depth, 3.5 cm
diam.) was collected, sieved (5mm mesh size), homoge-
nised and stored at field moisture content overnight at 4 1C
before analysis (Bloem et al., 2006). An additional sample
was taken for the determination of bulk density (Elliott
et al., 1999).

Soil dry matter content was determined after oven-
drying of approximately 30 g of the bulk sample (in
duplicate) at 105 1C. Prior to further analysis bulk samples
were oven-dried at 40 1C. Organic matter content was
determined by loss-on-ignition (Ball, 1964) and pH of the
samples was measured in 1M KCl (pH-KCl). Total soil N
was determined by digestion with H2SO4, salicylic acid,
H2O2 and selenium as described by Novozamsky et al.
(1984) and measured by Segmented Flow Analysis (Skalar,
Breda). C/N ratio of the soil was calculated from total N
and organic matter percentage, assuming 58% of organic
matter to be C.

Water-extractable phosphorus (Pw) (Sissingh, 1971) and
ammonium lactate–acetic acid-extractable P (P–Al) were
determined (Schouwenburg and Walinga, 1967). Extracts
were analysed by spectrophotometry.

Potassium content (K–HCl) was analysed by shaking
approximately 10 g of soil with 100ml of extraction
solution (0.2M HCl and 0.4M oxalic acid). The suspension
was shaken for 1 h, filtered and measured by Eppendorf
Elex 6361 Flame-AES.
The field trial was mown in five cuts: 5/13, 6/26, 8/2, 8/28

and 10/9/2003. Herbage was analysed for N, P, and K
contents as described by Novozamsky et al. (1983) and
measured by Segmented Flow Analysis. For every plot
total production and clover production were calculated in
tons dry matter per hectare.

2.3. Fungal and bacterial biomass

Two hundred g soil was pre-incubated at 50% WHC
(water holding capacity) at 12 1C for four weeks to stabilise
soil conditions and to avoid effects of temperature and
moisture fluctuations in the field (Bloem et al., 2006). For
each sample, 20 g of soil and 190ml of demineralised water
were homogenised in a blender (Waring, New Hartford,
Conn.) for 1min at maximum speed ð20; 000 revmin�1Þ.
A 9ml sample was fixed by adding 1ml of 37%
formaldehyde. The soil suspension was resuspended and
after 2min of settling 10ml of the soil suspension was
evenly smeared in a circle of 12mm diameter on a printed
glass slide (Cel-line Associates Inc., Vineland, NJ, USA).
The water-repellent coating keeps the suspension in defined
area of 113mm2. The hole was precleaned with 70%
ethanol and washing-up liquid (Dreft). Slides with soil
suspension were then air-dried (Bloem and Vos, 2004).
Slides for counting of fungi were stained for 1 h

with differential fluorescent stain (DFS) solution. The
stain solution consisted of 3:5 g l�1 europium chelate
(Kodak cat no. 1305515, Eastman Fine Chemicals,
Rochester NY, USA) and 50mg l�1 fluorescent brightener,
C40H42N120O10S2 Na2 (FW 960.9, Fluostain I, cat no.
F0386, Sigma Chemical Co., St. Louis MD, USA) in 50%
ethanol, filtered through a 0:2mm pore-size membrane.
Europium chelate stains DNA and RNA red, FB stains
cellulose and polysaccharide (cell walls) blue. After
staining the slides were rinsed three times in a bath of
50% ethanol. After air-drying a coverslip was mounted
with immersion oil.
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Fungi were counted under an epifluorescence microscope
at 400� magnification. Blue hyphae were assumed to be
inactive or dead, red hyphae were assumed active.
Unstained (melanin-forming) hyphae were also counted.
Hyphal lengths are estimated by counting the number of
intersections of hyphae with the lines of a counting grid.
Hyphal length ðmmgrid�1Þ was calculated as H ¼ IpA=2L,
where I ¼ number of intersections per grid, A ¼ grid area,
L ¼ total length of lines in the counting grid. The total
length of fungal hyphae F (m g�1 soil) was calculated as
F ¼ H � 10�6ðA=BÞð1=SÞ, where H ¼ hyphal length, A ¼

area of the slide covered by sample, B ¼ area of the grid
and S ¼ amount of soil on the filter. Biovolumes can be
calculated from length L and width W using the equation
V ¼ ðp=4ÞW 2ðL�W=3Þ. Fungal biomass was calculated
assuming a mean hyphal diameter (width) of 2:5mm and a
specific carbon content of 1:3� 10�13 gCmm�3 (Bakken
and Olsen, 1983; Veen and Paul, 1979).

Slides for counting of bacteria were stained for 30min
with the fluorescent protein dye 5-(4,6-dichlorotriazin-2-yl)
aminofluorescein (DTAF). This solution consisted of
2mg DTAF dissolved in 10ml buffer solution (0.05M
Na2HPO4 ð7:8 g l

�1
Þ and 0.85% NaCl ð8:5 g l�1Þ, adjusted

to pH 9), filtered through a 0:2mm pore-size membrane.
After staining the slides were rinsed three times with buffer.
After air-drying a coverslip was mounted with immersion
oil (Bloem and Vos, 2004). On the stained slides, bacterial
numbers and cell volumes were measured automatically
with a confocal laser-scanning microscope (Leica TCS SP2)
combined with image analysis software (Leica Qwin pro) as
described by Bloem et al. (1995). Bacterial biomass (C) was
estimated from the biovolume using a specific carbon
content of 3:1� 10�13 gCmm�3 (Fry, 1990).

Note that the specific carbon content used for bacteria is
2.4 times higher than that used for fungi. This means that
our fungal to bacterial biomass ratios based on carbon are
2.4 times lower than ratios based on biovolume (Velvis,
1997).

2.4. Bacterial activity

Bacterial growth rate was determined as the incorporation
of [3H]thymidine and [14C]leucine into bacterial DNA and
proteins (Bloem and Bolhuis, 2006; Michel and Bloem,
1993). [Methyl-3H] Thymidine ð925GBqmmol�1Þ and L-
[U-14C]leucine ð11:5GBqmmol�1Þ were purchased from
Amersham Ltd., Amersham, UK. Per sample (tube) we
used 1:5ml 14C leucine, 2:0 ml 3H thymidine and 16:5ml
unlabelled thymidine ð2:35mg l�1Þ. This corresponds with
2mM and 2:78kBq 14C leucine and 2mM and 74kBq 3H
thymidine per tube. Twenty g soil and 95ml Prescott and
James’s mineral salt solution (P&J medium, Prescott and
James (1955)) were shaken by hand in a bottle for 30 s.
Hundred ml of soil suspension was added to 20ml labelled
thymidine and leucine in a 13ml polypropylene centrifuge
tube with screw cap. After 1 h incubation the incorporation
was stopped by adding 5ml of 0.3N NaOH, 25mM EDTA
and 0.1% SDS. Blanks were prepared by adding the
extraction mixture immediately after the start of the
incubation. Macromolecules (DNA and proteins) were
extracted at 30 1C for 18–20h (overnight). The suspension
was mixed and centrifuged for 40min at 5000� g

(6500 revmin�1, outer ring of a rotor for 16� 25ml tubes)
at 25 1C in an MSE high speed 18 centrifuge. The
supernatant was aspired in a 13ml tube and cooled on ice.
After 5min, 1.3ml ice-cold 1N HCl and 1.3ml ice-cold 29%
TCA (w/v) were added. The suspension was cooled further
for at least 15min. The precipitated macromolecules (DNA
and proteins) were collected on a 0:2mm pore size cellulose
nitrate filter (BA 83, Schleicher & Schuell). The filters were
washed three times with 5ml ice-cold 5% TCA. The filters
were transferred to glass scintillation vials and 1ml 0.1N
NaOH and 1ml ethylacetate were added to dissolve
macromolecules and filters. Fifteen ml Ready Safe scintilla-
tion cocktail (Beckman Instruments, Fullerton, CA, USA)
was added and radioactivity was counted in an LKB Wallac
1215 liquid scintillation counter (LKB Instruments, Turku,
Finland). Blanks were substracted and the counted dpm
were multiplied by 0.0028378 to calculate pmol thymidine
incorporated per gram soil per hour, and by 0.07587 to
calculate pmol leucine incorporated per gram soil per hour.

2.5. N leaching

Two ceramic cup samplers were placed in each field plot
at a depth of 30 cm below the soil surface. A weather
station was situated on the farm and meteorological data
were obtained daily from the KNMI (Royal Dutch
Meteorological Institute) website. The cups were sampled
after 50mm of precipitation during January and February
2004. Pore water samples were analysed for NO�3 and NHþ4
using Segmented Flow Analysis (Houba et al., 2000).
N leaching was calculated by multiplying the average

concentration of two sampling dates with the precipitation
surplus in the period in between (De Vos and Assink, 2004;
Smit et al., 2004).

2.6. Partial N balance

A partial N balance (IN–OUT) was calculated for each
plot. Inputs of the budget were: fertiliser, N2 fixation and
atmospheric deposition. Biological N2 fixation by Rhizo-
bium in symbiosis with white clover was estimated using
the formula given by Carlsson and Huss-Danell (2003).
Atmospheric deposition was assumed to be 50 kg ha�1 for
the eastern part of The Netherlands (Aarts et al., 2000).
Output of the budget was crop yield. Unknown items were
leaching and gaseous losses.

2.7. Statistical analysis

Statistical analysis was carried out using the statistical
package SPSS (SPSS Inc., Chicago, IL). F=B ratio was
transformed using the arcsine square root to meet the
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requirements of normality and homogeneity of variances.
Stepwise forward multiple linear regression analysis was
used to elucidate relationships of soil characteristics and
management with microbial biomass and activity.

Treatment effects on microbial parameters were analysed
by a two-way ANOVA, because the layout of the trial did
not permit the comparison of the seven manure treatments.
The factors were manure type (no manure, farmyard
manure and slurry) and N application rate (0, 40, 80 and
120 kgNha�1). This was done for grass-clover and grass
separately because degrees of freedom were insufficient for
a three-way ANOVA with crop, manure type and N
application rate. These analyses were followed by Tukey’s
test to detect differences between treatments. Differences
between grass-clover and grass, and between the control
and slurry for grass, were analysed using T-tests.

3. Results

3.1. Soil and crop characteristics

pH values in the trial ranged from 4.4 to 4.8, being
significantly lower in grass-clover treatments than in grass
(Table 2). In grass-clover pH increased with increasing N
application rate and this tendency could also be seen in
grass. Plots receiving farm yard manure had a higher pH
than no manure in grass-clover; slurry had a higher pH
than no manure in grass.

In grass the soil C/N ratio was higher in the plots with no
manure than in the slurry treatments (Table 2). Though not
significantly different, organic matter content was higher in
grass-clover than in grass, and tended to increase with the
application rate of (N) fertilisation. Although soil C/N
Table 2

Soil characteristics and yield data

Crop Treatment n pH Soil C/N

ratio

Orga

matte

Grass-clover 0 4 4:4a 12.8 5:2ab

40 8 4:4a 13.1 5:1a

80 8 4:5ab 13.3 5:2ab

120 8 4:6b 13.0 5:4b

No manure 4 4:4a 12.8 5.2

FYM 12 4:5b 12.9 5.3

Slurry 12 4:5ab 13.3 5.1

Grass 0 4 4.6 14.8 5.0

40 2 4.8 12.0 5.0

80 2 4.8 14.0 5.1

120 2 4.8 13.0 5.1

No manure 4 4:6a 14:8a 5.0

Slurry 6 4:8b 13:0b 5.1

Crop effect ��

Values denoted with the same letter are not significantly different (Tukey’s p

application rates and manure types separately. Asterisks in the crop effect row

clover and grass.
ratios did not differ significantly between grass-clover and
grass, N content in the removed crop (aboveground) did.
Total production and N yield were higher in grass-clover
than in grass, but showed no relation with N application
rate and fertiliser type.
Soil potassium contents in the trial ranged from 71 to

270mgK2O100 g�1 and were classified as ‘‘sufficient’’ to
‘‘very high’’ according to Dutch standards (Evers et al.,
2000). In grass-clover the potassium content was signifi-
cantly affected by manure type and N application level.
Slurry had lower potassium content than no manure and
farm yard manure treatments. N application level did not
have a consistent effect.
The average values of Pw and P–Al for all fields

were, respectively, 19� 5 and 43� 8mgP2O5 100 g
�1,

which are classified as ‘‘sufficient’’. Total soil N was
2:3� 0:3mgkg�1. Bulk density was higher in the no
manure treatments than in the other treatments and ranged
from 1.40 to 1:58 g cm�3. Dry matter percentage of the
entire field was 85� 2.

3.2. Microbial biomass and activity

On average, fungal biomass constituted 25� 7% of
the total microbial biomass in the field trial and ranged
from 19.2 to 46:0mgCg�1. Bacterial biomass was 81:0�
16:1mgCg�1 for the entire field and thymidine and
leucine incorporation averaged, respectively, 14:4� 4:9
and 277:6� 55:9 pmol g�1 h�1 for all treatments together.
The F=B biomass ratio varied between 0.25 and 0.46.
Fungal and bacterial biomass, bacterial activity and the

F=B ratio were significantly affected by management and
soil properties.
nic

r (%)

Clover production

(tons dmha�1)

Total production

ðtons dmha�1Þ

N yield in crop

ðkgha�1Þ

5.5 10.7 314

5.8 11.0 319

5.5 10.7 314

5.9 11.4 331

5.5 10.9 314

5.7 10.9 321

5.8 11.2 322

1.1 6.3 136

1.0 7.3 150

1.4 8.1 169

0.1 6.6 130

1.1 6.3 135

0.8 7.4 150
�� �� ��

ost hoc test, Po0:05 or T-test, Po0:05). Comparisons were made for N

indicate significant differences (T-test, �Po0:05, ��Po0:01) between grass-
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3.2.1. Management effects

3.2.1.1. Crop. The differences between grass and grass-
clover treatments were large and highly significant.
Fungal biomass in grass treatments was almost two-fold
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Fig. 1. Fungal and bacterial biomass and F=B ratio for nitrogen level and man

(top) and grass (bottom). Mean values � SE are shown.

Table 3

Thymidine and leucine incorporation for crop, N application rate and manur

Crop Treatment n

Grass-clover 0 4

40 8

80 8

120 8

No manure 4

FYM 12

Slurry 12

Grass 0 4

40 2

80 2

120 2

No manure 4

Slurry 6

Values denoted with the same letter are not significantly different (Tukey’s p

application rates and manure types separately.
higher than in grass-clover treatments (38:6� 9:8 vs.
25:2� 7:2mgCg�1, T-test, Po0:001) (Fig. 1). Also bacter-
ial biomass, which was 94:4� 14:2 mgCg�1 in grass and
79:1� 14:2mgCg�1 in grass-clover, and total microbial
no FYM
0

0.1

0.2

0.3

0.4

0.5

ria F/B ratio

no slurry
0

0.1

0.2

0.3

0.4

0.5

lover

 F
/B

 r
at

io
Manure type

slurry

ure type (No ¼ no manure, FYM ¼ farm yard manure) in grass-clover

e type

Thymidine incorporation

ðpmol g�1 h�1Þ

Leucine incorporation

ðpmol g�1 h�1Þ

10a 236a

11ab 237a

14ab 268ab

16b 307b

10a 236

13ab 260

15b 281

14 266

15 295

19 340

25 387

15 266a

19 340b

ost hoc test, Po0:05 or T-test, Po0:05). Comparisons were made for N
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R2 = 0.47 R2 = 0.74
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Fig. 2. Relationship between leucine incorporation, F=B ratio and pH for

grass-clover and grass. Markers represent observations, lines represent

regressions, for grass-clover (dashed, P ¼ 0:025) and for grass (solid,

P ¼ 0:021).
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biomass were significantly higher in grass (T-test, P ¼

0:007 and Po0:001, respectively). This could also been
seen for the F=B biomass ratio, which was 0.34 overall for
grass-clover and 0.42 for grass (T-test, P ¼ 0:022).

Regression of the F=B ratio with clover production
resulted in a weak but significant negative relationship
(R2 ¼ 0:12;P ¼ 0:035).

3.2.1.2. N application rate. Increasing N application rates
reduced the total amount of fungi in the grass-clover
treatments (ANOVA, P ¼ 0:014; Fig. 1). The 0 and
40 kgNha�1 treatments had a significantly higher amount
of fungi than the 120 kgNha�1 treatment. In the grass
treatments this trend could also be seen but was not
statistically significant (Fig. 1). The amount of active fungi
followed the same trend (data not shown), but without
significant differences. No significant effect of N applica-
tion rate was found on bacterial biomass. For grass-clover
thymidine and leucine incorporation were highest in the
120 kgNha�1 treatment (ANOVA, P ¼ 0:027 and P ¼

0:007 respectively, Table 3). N application rate had a
significant negative main effect on the F=B biomass ratio
ðP ¼ 0:034Þ.

3.2.1.3. Manure type. There was no effect of manure type
on fungal and bacterial biomass (Fig. 1). For grass-clover
an interaction-effect was seen of N application rate and
manure type on fungal biomass and F=B ratio ðP ¼ 0:025Þ.

3.2.2. Relations with soil characteristics

3.2.2.1. pH. The F=B biomass ratio decreased with
increasing pH for grass-clover and grass separately
(Fig. 2). Thymidine and leucine incorporation both had a
significant positive relationship with pH. When these
regressions were separated for grass-clover and grass
significant relationships were found for thymidine incor-
poration (R2 ¼ 0:42, Po0:001 and R2 ¼ 0:60, P ¼ 0:008)
as well as for leucine incorporation (R2 ¼ 0:47, Po0:001
and R2 ¼ 0:74, P ¼ 0:001, Fig. 2).

3.2.2.2. Organic matter quality and quantity. No signifi-
cant relationship with microbial biomass or F=B ratio was
found for C/N ratio and organic matter percentage.
Neither thymidine nor leucine incorporation and CO2

evolution showed any relationship with organic matter
characteristics.

3.3. N leaching

The N leaching in grass-clover treatments was signifi-
cantly higher than in grass (T-test, Po0:001, Fig. 3).
Multiple regression analysis with management and soil
characteristics (N application rate, manure type, clover
production, C/N ratio, pH, organic matter percentage,
fungal and bacterial biomass) pointed out that pH and N
application rate determined leaching ðR2 ¼ 0:53;Po0:001Þ.
Leaching increased with higher N application rates and
decreasing pH-values. No correlation with fungal biomass
or F=B ratio was found when all single observations
were used separately. This was caused by the large
variation of the fungal biomass. However, when regression
was performed with the means of treatments a negative
relationship with fungal biomass was revealed (Fig. 4).

3.4. Partial N balance

N application rate had a significant main effect on the
partial N balance (ANOVA, Po0:001). The partial N
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balance was negative at the lowest N application rates
(0 and 40 kg ha�1), and positive at high N application rates
(80 and 120 kg ha�1). Stepwise multiple regression analysis
included N application rate and pH ðR2 ¼ 0:82;Po0:001Þ,
in which the partial N balance was higher with increasing
N application rate and pH. No correlation was found
for partial N balance with N leaching. Regressions with
fungal biomass and F=B ratio both resulted in a weak,
significant negative relationship (R2 ¼ 0:12;P ¼ 0:034 and
R2 ¼ 0:11;P ¼ 0:040, respectively). When regression was
done with means for treatments of the partial N balance
with fungal biomass a significant negative relationship with
a higher correlation coefficient was the result (Fig. 4). Here,
treatments were not split up for grass-clover and grass as
no crop effect was present on the N balance.
4. Discussion

The bacterial biomasses we found were somewhat lower
than Bloem and Breure (2003) found in grasslands, but
twice as high as the biomasses Van der Wal et al. (2006)
found in agricultural sites, ex-arable fields and heathlands.
The fungal biomasses we found were comparable with
biomasses found by Van der Wal et al., which, in
combination with our higher bacterial biomasses, resulted
in lower F=B biomass ratios in our fields. Bittman et al.
(2005) found higher F=B ratios in grass swards, which was
mainly caused by higher fungal biomass. It should be noted
that factors used for converting bacterial numbers and
hyphal lengths into biomass-values differed from ours.
Often measures of fungal and bacterial biomass are made
using phospholipid fatty acid analysis (Bardgett et al.,
1996; Frostegard and Bååth, 1996). F=B ratios are then
expressed as fungal PLFA/bacterial PLFA. Because of all
the different methods and conversion factors for calculat-
ing F=B ratios, it is questionable to compare different
studies.
In this study, fungal and bacterial biomass and the F=B

ratio showed remarkably quick responses to changes in
management and fertiliser regime. Already within three
growing seasons after the start of the experiment fungi
responded to crop and to N application rates.
In line with our first hypothesis, the F=B ratio decreased

with increasing N application rate. This was mainly
caused by a decrease of fungal biomass, while bacterial
biomass remained approximately constant with increasing
N application rate (Fig. 1). Both fungal and bacterial
biomasses were lower under grass-clover than under grass.
In contrast to our hypothesis, manure type did not seem

to be of much importance for determining F=B ratio and
microbial biomass. Probably, the C/N ratios of the two
manure types, 6.8 for slurry vs. 12.3 for farmyard manure,
were not high enough to enhance fungi. Organic matter
that has been reported to stimulate fungal growth had C/N
ratios of 20 or higher (Vinten et al., 2002). Moreover, it
often takes much longer than two years (decades) before
changes in manure type have clear effects on soil organic
matter quality and soil organisms (Bloem et al., 1997;
Mäder et al., 2000; Bloem et al., 2004). Furthermore, the
knives of the slit-injector may have been to far apart
(20 cm) to have a detrimental effect on mycelial networks.
The presence of white clover had a negative effect on

fungal biomass and F=B ratio. This result seems to be in
contrast with reports on a higher arbuscular mycorrhizal
colonisation in clover than in grass (Ryan and Ash, 1999;
Zhu et al., 2000). This was attributed to the finer branched
root system and root hairs of grass, which makes it less
dependent on mycorrhizal fungi. Gamper et al. (2004),
however, found higher levels of colonisation in ryegrass
compared to white clover. It should be recognised that a
higher level of colonisation (expressed as percentage of
root length infected) does not necessarily mean also a
higher biomass of mycorrhizal hyphae per gram of soil.
Moreover, we do not know which fraction of the total
fungal biomass consists of mycorrhizas and which fraction
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consists of saprophytic fungi. Not only fungal biomass but
also bacterial biomass and activity were greater under grass
than under grass-clover (Fig. 1, Table 3). This might be a
consequence simply of the denser root system, and thus
higher rhizosphere/bulk soil ratio, of perennial ryegrass
compared to white clover (Schortemeyer et al., 1997).
However, white clover has a much higher ammonium
exudation than perennial ryegrass (Paynel and Cliquet,
2003) which theoretically might affect fungal abundance
negatively and bacterial biomass positively. However,
Breland and Bakken (1991) did not find any profound
effect of plant species on microbial immobilisation of
carbon and nitrate in the rhizosphere.
Although grass-clover mixtures have been reported to

have a higher aboveground production (Elgersma and
Hassink, 1997), as could also be seen in this study, this did
not increase the amount of soil organic matter in the two
years the experiment had lasted. Clover can change the
C/N ratio of the soil organic matter because the litter has a
lower C/N ratio compared to grass (Neergaard et al.,
2002). We did not find a lower C/N ratio of the soil organic
matter in grass-clover treatments compared to grass
treatments, but the N content of the removed crop was
higher in grass-clover than in grass. This implies that the
difference in fungal biomass between grass and grass-clover
might be attributed to the difference in litter quality.
If more nitrogen in root exudates or litter from white

clover suppresses the amount of fungi, this does not explain
why bacteria were less abundant in grass-clover than in
grass. Some unknown effects of exudates of grass or clover
might be involved.
Despite the narrow pH range in our experiment, we

found that the F=B biomass ratio decreased with increasing
pH (Fig. 2). This was caused by an increasing bacterial
biomass rather than a decreasing fungal biomass. These
results were consistent with other reports. Fungi can stand
low pH better than bacteria (Swift et al., 1979). Bardgett
et al. (1993) reported an increase in the amount of total
mycelium with increasing acidity. Also, effects of pH on the
fungal-to-bacterial substrate induced respiration were
reported: the respiratory activity of fungi increased with
acidification, while that of bacteria decreased (Blagodats-
kaya and Anderson, 1998). Bååth and Anderson (2003)
reported a decreasing F=B respiration ratio with increasing
pH, but a slightly increasing F=B biomass ratio (using
PLFA technique). Bacterial activity increased with increas-
ing pH, as has been reported several times (Bååth, 1996,
1998; Bååth et al., 1995; Pennanen et al., 1998).
N leaching was higher in grass-clover than in grass, while

fungal biomass was higher in grass. No clear relationship
was found for leaching and fungal biomass when single
observations were used, but regression analysis with means
of treatments resulted in a negative relationship. Also,
when analysed in the same way, means of partial N balance
showed a relationship with means of fungal biomass
(Fig. 4). A higher fungal biomass thus indicates a system
with lower N fertilisation, which results in a more negative
partial N balance (or smaller N surplus) and a lower N
leaching potential.
However, a causal relationship cannot be drawn from

these results. A field with a higher fungal biomass does not
necessarily coincide with a low N leaching potential.
Leaching and the partial N balance were not correlated
indicating that processes unaccounted for, such as volati-
lisation and denitrification were of differential importance
across the treatments. A complete N balance is needed to
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explain the relationships between fungal biomass, F=B

ratio and N leaching. Our results in general support the
suggestion that the F=B ratio is indicative for a sustainable
system with lower N losses, but more observations are
needed to confirm the relationship between F=B ratio and
sustainability.
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Bååth, E., 1998. Growth rates of bacterial communities in soils at varying

pH: a comparison of the thymidine and leucine incorporation

techniques. Microbial Ecology 36, 316–327.
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