

Agronomy as a manipulative tool

Kirsten Brandt University of Newcastle upon Tyne

- General ecological mechanisms affecting the content of phytochemicals
- What a farmer can do to increase (optimise) phytochemical content
- Consequences of existing practices on phytochemical content
- Consequences of differences in phytochemical content on human health

General ecological mechanisms affecting the content of phytochemicals

UNIVERSITY OF

- Growth/differentiation balance (GDB)
 - Fast-growing plants don't bother about defence
 - Abundance of nutrients depresses the accumulation of some defence compounds
- Specific evolutionary responses (SER)
 - Plants must be able to adapt to changes in environment within the range normally encountered
 - Regulatory mechanisms are fine-tuned genetically_{COST 926 Conference 2005}

Physiological response to nutrient availability

(Stamp 2003)

UNIVERSITY OF

NEWCASTLE UPON TYNE

Overview of regulation hierarchy for <u>carbon based</u> <u>secondary compounds</u>

UNIVERSITY OF NEWCASTLE UPON TYNE

Koricheva et al. 1998

Effects of N fertilisation on plant metabolites

Koricheva et al. 1998

Effects of fertilisation on compounds for defence and sunscreens

Effects of fertilisation on content of phenolic acids in barley leaves

UNIVERSITY OF

Correlation of disease severity and content of phenolic acids in barley leaves

NEWCASTLE UPON TYNE

UNIVERSITY OF

(Aaboer et al. 2003)

What a farmer can do to increase (optimise) phytochemical content

- 1. Avoid over-fertilisation
- Take contributions from crop residues etc. into account when planning the use of fertiliser
- Observe the crop carefully and make additional reductions of fertiliser in areas where diseases tend to be more severe (also within fields)

What a farmer can do to increase (optimise) phytochemical content

- 2. Allow moderate waterstress
- Let the soil become dry before watering
- If feasible (e.g. drip irrigation), water alternate rows and shift when soil is completely dry in the non-irrigated rows

What a farmer can do to increase (optimise) phytochemical content

- 3. Favour generative growth
- Provide adequate space for each plant
- Adjust timing of planting and harvest to ensure full maturation on the plant
- Choose genotypes that are well suited to the climate and soil conditions

UNIVERSITY OF NEWCASTLE UPON TYNE

Example of optimised content of phytochemicals: High quality wine

Effect of nutrient supply on quality of apples (Otava)

High N (Annual clovergrass) Medium N (Perennial clovergrass)

Low N (Perennial grass)

Effects of nutrient supply on chemical composition of apples

Consequences of existing practices on phytochemical content

- Few well controlled studies, many confounding factors (genotype, maturity etc.)
- Three main groups of practices:
 - High input (nutrient surplus)
 - Low input/organic (nutrient offtake = net mineralisation)
 - Subsistence farming (nutrient offtake > net mineralisation)

Consequences of existing practices on phytochemical content

- High input/conventional: Highest yield, most variable concentration of phytochemicals, low average values
- Low input/organic: Intermediate yield, most constant concentrations, highest average
- Subsistence farming: Lowest yield, moderately variable concentrations, intermediate average (very little data).

Effects on subsistence farmed millet

Total P Phytate P

Effects on subsistence farmed millet

Zn 🗌 Phyt/Zn

Effects on subsistence farmed millet

Consequences of differences in phytochemical content on human health

- Positive effects of an increase can be calculated if we know the relative importance of each phytochemical for human health
- Or we can measure the combined effects of changing many phytochemicals at the same time
- The outcome can be expressed in %, as more or less "concentrated"

(van't Veer et al. 2000)

(van't Veer et al. 2000)

N-content of leaves

Hours

Negative effects on health?

- For some phytochemicals, a high concentration is toxic, e.g. glucosinolates or the potato glycoalkaloids
- Here we need to know the consequences of both too little and too much, in order to define the optimal level, and thus the optimal production strategy

Hormesis

"J-shaped" or biphasic curve. The true dose response pattern for most (maybe all) biologically active compounds.

(Hajslova et al. 2005)

UNIVERSITY OF NEWCASTLE UPON TYNE

inverse of resource availability

Effect of growth conditions on response to stress

Pair = same variety and year,

Difference = conventional value minus organic value. COST 926 Conference 2005

UNIVERSITY OF NEWCASTLE UPON TYNE

Conditioned taste aversion:

If you get sick, the taste of the last food you ate before this becomes disgusting.

Example: If presented with flavoured water, and then injected with LiCl, a thirsty rat will not any more drink water with this flavour.

(Reilly & Trifunovic 2000)

Sum of psoralen, bergapten
and xanthotoxin (mg/kg)

Part	Petiole	Leaf	
Heart (1)	1.5	3.6	
Inner (2)	1.0	9.9	
Outer (3)	1.4	44.9	
Root	0.9		

(Slanina et al. 2003)

Cancer preventive compound(s)? in carrots.

Epidemiology, carrots, cancer and β -carotene: Risks of several cancers are negatively correlated with β -carotene content in human plasma.

Carrots are a major contributor to intake of β carotene.

Supplementation with β -carotene has no preventive effect on cancer

Effect on Azoxymethane induced colorectal cancer in rats

UNIVERSITY OF NEWCASTLE UPON TYNE

Number of (pre)neoplastic lesions in % of control treatment

Impact on health from agronomic optimisation

- Increase using existing best practice: 10-50% higher than common practice
- Impact on health from doubling of vegetable intake: 1.3 years for cancer (Gundgaard et al. 2003), approx. 1 year for CVD.
- Estimated impact of best practice: 1-12 months additional life expectancy

Summary/conclusions

UNIVERSITY OF

- Constitutive and induced levels of phytochemicals are affected by farming practice, in particular fertilisation and irrigation strategies
- Low input/organic methods tend to shift the balance towards higher resistance and less growth compared with high input, leading to increased and less variable levels of defence related phytochemicals
- If we make plant foods more "concentrated" by increasing the level of those phytochemicals that are most important for health, will it have substantial impact on public health
- We need to know which phytochemicals are important for human health and by how much, if we want more specific improvements than organic food COST 926 Conference 2005

Sponsors

- Danish Research Centre for Organic Farming (www.DARCOF.dk)
- EU Commission via the FP6 Integrated Project QualityLowInputFood (CT- COM 506358)

COMMUNITY RESEARCH

 Danish Research Council for Veterinary and Agricultural Sciences

