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ABSTRACT The reaction norm model is becoming a popular approach for the analysis of G x E 1

interactions. In a classical reaction norm model, the expression of a genotype in different 2

environments is described as a linear function (a reaction norm) of an environmental gradient or 3

value. A common environmental value is defined as the mean performance of all genotypes in the 4

environment, which is typically unknown. One approximation is to estimate the mean phenotypic 5

performance in each environment, and then treat these estimates as known covariates in the model. 6

However, a more satisfactory alternative is to infer environmental values simultaneously with the 7

other parameters of the model. This study describes a method and its Bayesian MCMC 8

implementation that makes this possible. Frequentist properties of the proposed method are tested in 9

a simulation study. Estimates of parameters of interest agree well with the true values. Further, 10

inferences about genetic parameters from the proposed method are similar to those derived from a 11

reaction norm model using true environmental values. On the other hand, using phenotypic means12

as proxies for environmental values results in poor inferences.13

14

Keywords: G x E interaction, Environmental sensitivity, Reaction norm model, Environmental 15

value, Gibbs sampler, Genetic parameters.16

17

Introduction18

The reaction norm model (Falconer and Mackay, 1996) is attractive to describe genotype by19

environment interactions (G × E) partly because it can accommodate a very large number of 20

environmental levels with few parameters. In its standard version, it requires that covariates are21

known (e.g., Karan et al., 1999; Ravagnolo and Misztal, 2000, Kingsolver, et al., 2004). However, 22

in animal breeding applications one may postulate a linear relationship between the phenotypic 23

expression of a given genotype and a particular environmental effect (e.g., herd effect). In this setup 24

the covariate (i.e., herd effect) is unknown. One approximation reported in the literature is to 25

compute the mean phenotypic performance in the appropriate environment and to use such an 26
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estimate in lieu of the unknown covariate in the model (e.g., Calus et al, 2002; Kolmodin et al,27

2002; Calus and Veerkamp, 2003).28

Including a function of the data as a covariable in the sampling model for the data is clearly 29

unsatisfactory. Apart from the understatement of uncertainty due to treating phenotypic means as 30

known parameters, one can imagine situations that would lead to misleading representations of 31

environmental values using this approach. An example would be the presence of genetic trend. 32

Since in the reaction norm model a breeding value is defined as a function of the environmental 33

gradient, biased estimates of environmental values may result in incorrect ranking based on 34

predicted genetic values. 35

It is therefore important to find more appropriate methods to account for unknown covariates in 36

a reaction norm model. An alternative is to infer the environmental values simultaneously with the 37

other parameters of the model. The objectives of this study are (1) to describe a method and its 38

Bayesian MCMC implementation that makes this possible, and (2) using a simulation study, to test 39

the expectation that the proposed method leads to more satisfactory inferences about genetic 40

parameters than the approximate method mentioned above.41

42

Model and methods43

Model44

When both genetic and non-genetic environmental sensitivities are taken into consideration, a 45

reaction norm model can be written as46

eaHaZuHuZEhXby ha0ahu0u ++++++= (1)47

where y is the data vector (order n), b is the vector of fixed effects (order nb), h is the vector of 48

environmental values (order nh), u0 is the vector of intercepts (order nu), uh is the vector of slopes of 49

reaction norms for non-genetic random effects (e.g., permanent effects, of order nu), a0 is the vector 50

of intercepts (order ng), ah is the vector of slopes of additive genetic reaction norms (order ng), and e51

is the vector of residual effects (order n). X, E, Zu, Hu, Za and Ha are the incidence matrices. The ith52
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row of the matrices X, E, Zu, and Za has exactly one element equal to one, and the remaining 53

elements equal to zero. When the covariate associated to the reaction norm is treated as unknown, 54

the ith row of the matrices Hu and Ha has exactly one element equal to the effect of the environment 55

(hj or a function of hj) where the observation is recorded, and the others equal to zero.56

In principle h can be treated as a fixed or a random vector. Here it is treated as random in order 57

to better meet identifiability requirements. In the present model identifiability is a complex topic.58

We limit ourselves to making the statement that the functions of the parameters that are estimated 59

and reported below are identifiable.60

The conditional distribution of y is assumed to be normal having the form61

)(N R,aHaZuHuZEhXb~R,a,au,uh,b,|y ha0ahu0uh0h0 +++++ ,62

where R is the matrix (order n) of random residual covariances. Without loss of generality, it is 63

assumed that residuals are homoscedastic and independent of each other so that R = Iσe
2, where I is 64

the identity matrix and σe
2 is the residual variance.65

66

Prior distribution of location parameters67

The prior distribution of vector b is assumed to be improper uniform with density68

p(b) ∝ constant. (2)69

The random vectors h, (u0, uh) and (a0, ah) are assumed to have normal, mutually independent70

prior distributions. The prior density function of h given σh
2 is71








−
=

−

2
22

2
exp)2()(

h

n

h

h

p
σ

πσσ hh'
|h 2

h (3) 72

where σh
2 is the variance of hi, and it is assumed that Var(h)=Iσh

2.73

74
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Similarly, let 
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Var , where A is the numerator 78

relationship matrix among ng individuals. Then the prior density function of g, given G0 and A is 79
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where kg =2 is the dimension of G0.81

82

Prior distribution of dispersion parameters83

The prior distributions of σh
2 and σe

2 are assumed to be scaled inverse Chi-square distributions 84

with density85
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and87
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, (7) 88

where νI is the degree of freedom, and si
2 is a scale parameter, i = h, e. These reduce to improper89

uniform distributions if νi = -2 and si
2= 0.90

The prior distributions of G0 and U0 are assumed to be inverse Wishart distributions, with 91

density92

))(
2

1
exp(||),|( 1

0
2/)1(

00
1-

gg VGGVG −++− −= trp gg k
g

νν (8) 93
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and94

))(
2

1
exp(||),|( 1

0
2/)1(

00
1-

uu VUUVU −++− −= trp uu k
u

νν (9) 95

where ki is the dimension of G0 or U0, Vi is the scale matrix and νi is the degree of freedom, i = u, 96

g. Setting Vi=0 and νi = -(ki+1), retrieves an improper uniform distribution.97

98

Joint posterior distribution of all the parameters99

Let θ be the vector of all location parameters except h, i.e., θ = (b’, u0’, uh’, a0’, ah’). The joint 100

posterior distribution of all the parameters is101

)()()()()()|()()σ(

)|,,,(
222

2
0

2

ehh

eh

pppppppp

p

σσσθ

σσ

0h000h00
2
e

0

G|a,aGU|u,uUhh,,|y

yG,Uh,θ
∝

(10) 102

103

Fully conditional posterior distribution of the location parameters θ104

The fully conditional posterior distribution of θ can be directly derived from (10) by extracting 105

terms involving θ. This results in106

)()()σ(

),( 2

0h00h0
2
e

00
2
h

G|a,aU|u,uh,θ,|y

G,U,h,y,|θ
ppp

p e

∝

σσ
(11) 107

108

Further, assuming h known, define109

eaHaZuHuZXbEhyy ha0ahu0uθ +++++=−= (12)    110

Correspondingly, let )HZHZ(XW aauuθ ::::= , 2/ eσθθθ y'Wr = , and111



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
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

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


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0

1-
0θ
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0I)(U0      

00         0         

Ω ,  θθθθ ΩW'WC += 2/ eσ .112

Then the mixed model equations associated with (12) can be written as113

θθ rθC =ˆ . (13) 114
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Since )σ()σ( 2
e

2
e θ,|yh,θ,|y θpp = , the fully conditional posterior distribution of θ is115
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118

Using results in Lindley and Smith (1972) and Gianola and Fernando (1986), it is easy to show that 119

the posterior distribution of location parameters, given dispersion parameters, is multivariate 120

normal. That is,121

),ˆ(~,| 1
0

−
θθ Cθy,σ,GUθ 2

e0 N .122

123

Let θi denote an arbitrary element (or set of elements) of θ, and let θ-i denote the vector θ with 124

θi excluded, and partition the vector rθ and the matrix Cθ appropriately, such that125
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ii
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From standard multivariate normal theory, it can readily be established that if the distribution of127

θy,σ,GUθ 2
e0,| 0  is normal, then that of θy,σ,GU,θθ 2

e0,| 0ii − is also normal, with conditional 128

mean and variance given by (Sorensen and Gianola, 2002)129
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1
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Consequently the fully conditional posterior distribution of θi is132
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1
),(0

−
−−

−
− − iiiiiiiii i

N θθθθθ CθCrCy,σ,GU,θθ 2
e0 .133

134

Fully conditional posterior distribution of h135
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From (10), the density of the fully conditional posterior distribution of h is136

)()σ(),( 2 2
h

2
e00

2
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Based on (1), an observation y can be described as138
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139

Therefore, an alternative formulation of the reaction-norm model (1) is140

eaZuZhEXby 0a0u +++++= * (16)141

where E* is the coefficient matrix obtained by replacing the non-zero element in the ith row of 142

matrix E with (1+ zui'uh + zai'ah).143

Assuming θ known, define144

ehEaZuZXbyy *
0a0u +=−−−=h (17)145

Further, let 122** )(/' −+= he σσ IEECh , and write the mixed model equations associated with (17)146

as 147
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Fully conditional posterior distribution of dispersion parameters157
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The fully conditional posterior distribution of dispersion parameters is deduced from (10). Let 158

Θ be the vector of all the location parameters, and W = (X: E,: Zu: Hu: Za,:Ha). For the residual 159

variance one obtains160

[ ]
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(20) 161

which is recognized as a scaled inverse Chi-square distribution with degrees of freedom νe + n and 162

scale parameter [ ] )/( ns)()'( e
2
e ++Θ−Θ− νeνWyWy .163

The fully conditional posterior distribution of the variance of environmental values is164
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(21) 165

which is a scaled inverse Chi-square distribution with degrees of freedom νh+nh and scale parameter166

(h’h+νhsh
2)/( νh+nh).167

The fully conditional posterior distribution of the covariance matrix of the reaction norm of the 168

non-genetic random effect is169
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This is an inverse Wishart distribution of dimension ku=2, with degrees of freedom νu+nu and scale 173

matrix (Su
2+Vu

-1)-1. 174

The fully conditional posterior distribution of the covariance matrix of the additive genetic 175

reaction norm is176
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Therefore, the fully conditional posterior distribution has density182
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which is an inverse Wishart distribution of dimension kg=2 with degrees of freedom νg+ng and scale 184

matrix (Sg
2+Vg

-1)-1. 185

186

Implementation of the Gibbs sampler187

The Gibbs sampler is a Monte Carlo method for obtaining samples from joint or marginal 188

posterior distributions of all parameters in the model, by repeated sampling from fully conditional 189

posterior distributions. The algorithm for the proposed model is as follows:190

1. Construct the mixed model equations (14 and 19).191

2. Set initial values for all the parameters. 192

3. Sample a new hi and replace the old hi:  a) calculate yh, E*, Ch and rh based on the current 193

samples of θ and variances; b) draw hi from )),(( 1
),(

1
h(i,i)h(i,-i)hi ChCrC −

−
− − iiihN ; c) use the new hi to 194

replace the old hi. 195

Page 10 of 21

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

11

4. Sample the new θi and replace the old θi: a) calculate yθ, Cθ and rθ using the current samples of 196

h and variances; b) draw θi from )),(( 1
),(),(

1
),(

−
−−

− − iiiiiiiiN θθθθ CθCrC ; c) replace the old θi with the 197

new θi.198

5. Sample a new σh
2 from ( ))/()'(, 22

hhhhhh nsnXInv +++− ννν hh .  199

6. Sample a new G0 from ( )( )gg nWInv ++−
−− ν,

1

2
1

g
2
g VS . Vg can be determined by using the 200

expectation of the prior inverse Wishart distribution of G0. 201

7. Sample a new U0 from ( )( )uu nWInv ++−
−− ν,

1

2
1

u
2
u VS . 202

8. Sample a new σe
2 from ( )[ ])/(ν,2 ns)()'(nXInv e

2
ee ++−−+− νν eWΘyWΘy .203

9. Replace the old variances with the new variances.204

10.  Repeat (3) – (9) until enough samples are available to meet the accuracy of various Monte 205

Carlo computations.206

A Gibbs sampling algorithm has been implemented in the DMU-package (Madsen and Jensen, 207

2004). In the actual implementation, the “iteration on data” technique is applied in order to avoid 208

storing Cθ  and Ch. 209

210

Simulation studies211

Data generation212

The proposed method was evaluated using a simulation study. Observations were generated 213

using the model214

eHaZaEh1y ++++= h0µ ,215

where h was the vector of environment values (herd-year effects),  a0 was the vector of levels and 216

ah was the vector of slopes of additive genetic reaction norms, e was the vector of random residuals. 217

Vectors h, (a0, ah) and e were assumed to be mutually independent and were sampled from218
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Five generations (five years) of data were simulated and distributed over 50 herds. In each 220

generation, 50 sires were mated to 1000 dams and each dam produced 5 offspring with records. 221

Both sires and dams were chosen randomly. Sires were used across herds and each sire was mated 222

to 20 dams from 5 herds. Dams were used within herds. Consequently there were 100 individuals 223

from 5 sires and 20 dams in each herd each generation.224

The parameters used in the simulation were: ,5.0,1,100,80 ,0
22

0
2 ==== ahaahah rσσσ  and 225

3002 =eσ . This corresponds to a G x E variance ( ) 80. 22 == hahh haVar σσ  and a marginal variance 226

of a datum (phenotypic variance across herd-years) 560222222 =+++= ehahaohP σσσσσσ . 227

228

Statistical analysis229

The simulated data were analyzed using the following models:230

1) M1: The model with unknown covariate of the reaction norm, treating herd-years as random 231

effects (the proposed approach),232

eHaZaEh1y h0 ++++= µ (M1)233

2) M2: The model using true herd-year effects as covariate (Ht) of the reaction norm and including 234

herd-years as fixed effects, 235

eaHZaXh1y h
t

0 ++++= µ (M2)236

3) M3: The model using phenotypic means of herd-years as proxies for the unknown covariates237

(Hm) of the reaction norm and including herd-years as fixed effects, 238

eaHZaXh1y h
m

0 ++++= µ (M3)239

Note that in models M2 and M3, the covariates of the reaction norm (Ht, Hm) are not necessarily 240

equivalent to the corresponding elements of h, while in M1, the non-zero elements of H are 241

equivalent with those of h.242

The additive genetic variance (σa
2) and heritability (ha

2) in a particular herd-year were calculated 243

as hh ahaaaa h 0
2222 2

0
σσσσ ++=  and 

)( 22

2
2

ea

a
ah σσ

σ
+

= . Since the covariate features in the additive 244
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genetic and phenotypic variances, for ease of comparison of heritabilities among models, the 245

covariate was expressed in units of the appropriate standard deviation (h*=h/σh). Thus 246

hh
hh aaaaa 00

22222 σσσσ ++= = haahaa hh
hh
σσσσσ *22*22

00
2++ , where 2

hσ  was the empirical variance of 247

the estimated herd-year effect using M1, the variance of true herd-year effect using M2, and the 248

variance of herd-year average using M3.249

250

Results251

Shown in Table 1 are correlations between the true and herd-year effects estimated with the 252

proposed method and estimated using phenotypic means. The correlation between true value of 253

herd-year effects and herd-year averages was significantly lower than 1 (0.901 averaged over 20 254

replicates). On the other hand, the proposed method resulted in a correlation between estimated 255

herd-year effects and the true values of 0.970, averaged over the 20 replicates. Thus the phenotypic 256

mean was a poorer estimator of herd-year effects than the estimates derived from the proposed 257

method. In the simulation study the variation of herd-year averages included variation of breeding 258

values across herd-years. Therefore the variance of herd-year averages was larger than the variance 259

of true herd-year effects (by 35%).260

As shown in Table 2, the proposed method (M1) yields estimates of variance components with 261

no detectable bias, while using herd-year averages as proxies for herd-year effects (M3) resulted in 262

biased estimates. Averaged over the 20 replicates, the variance components estimated from the 263

proposed method and from the model using true herd-year effects as covariates in the reaction norm 264

(M2) resulted in similar inferences. These estimates agreed well with the true values. On the other 265

hand using herd-year averages as covariates in the reaction norm resulted in an overestimation of 266

the variance component associated with “level” ( 2

0aσ ) and an underestimation of the variance 267

component associated with the “slope” ( 2

haσ ). These biases were significant. The sampling standard 268

deviation of the estimates of 2

haσ is largest using M1, lowest using M2, and intermediate using M3, 269

Page 13 of 21

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901

Journal of Animal Science



For Peer Review

14

while the standard deviation of the estimates of 2

0aσ was largest using M3. Mean squared errors270

favored M1 to M3 in all cases.271

Estimates of within herd-year heritabilities over different herd-year levels were unbiased for M1 272

and M2, but biased for M3 (Figure 1). Averaged over the 20 replicates, the estimates from the 273

proposed approach (M1) or from a model using true herd-year effects as covariates of reaction norm274

(M2) agreed well with the true heritabilities in all levels of herd-years. When herd-year averages275

were used as covariates (M3), the estimate of total additive genetic variance was biased but the bias 276

was less serious than that for 2

haσ . The effect of underestimation of 2
hσ on the total additive genetic 277

variance was partly compensated by the larger variation of herd-year averages (relative to the 278

variance of true herd-year effects). Despite this, the bias was still considerable. As can be seen from 279

Figure 1, estimates of heritabilities derived from M3 were different from the true heritabilities in 280

both quantity and pattern.281

282

Discussion283

In the present work we describe a method to infer unknown environmental values 284

simultaneously with other parameters in a reaction norm model. Using computer simulation, this 285

method is compared with an approximation traditionally implemented in the literature, whereby the 286

unknown environmental value is replaced by the average of the observations in the appropriate 287

environment. It is shown that the proposed method leads to better inferences than those derived 288

from the approximate method.289

The variance between herd-year phenotypic means includes a genetic component. As a result,290

this variance was 35% larger than that of true herd-year effects, and the correlation between the 291

herd-year means and true herd-year effects was 0.901. Taking the herd-year average as a covariate 292

in the reaction norm model resulted also in biased estimation of variance components. The variance 293

component associated with the “slope” ( 2
ahσ ) was underestimated by 42% and that associated with294

“level” ( 2
0aσ ) was overestimated by 11%.295
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The amount and sign of the bias depend on the data and the statistical model. An additional 296

study was carried out with data simulated from the same sampling model as reported above, but 297

with the difference that from generation 1 onwards individuals were selected on the basis of their 298

predicted additive genetic values for “level”. The results showed that the correlation between herd-299

year averages and true herd-year effects was approximately 0.80 and the variance of herd-year 300

averages was approximately 5 times larger than the variance of the true herd-year effects. Using the 301

herd-year average as a covariate of the reaction norm, 2

0aσ  was overestimated by 50%, while 2

haσ302

was underestimated by 88%.303

Many approximations and ad-hoc procedures have been reported in previous studies to account 304

for unknown covariates in reaction norm models. In a study of production and fertility traits in dairy 305

cattle, Kolmodin et al. (2002) estimated herd-year values using herd-year means computed from 306

data that had been pre-adjusted for fixed effects other than herd-years. In addition, herd-year values 307

were estimated using herd-year means that were computed from data including animals with 308

records in the appropriate herd-year, while dispersion parameters and breeding values were inferred 309

from data that only included individuals whose sires were to be evaluated. The adequacy of this 310

approximation could not be tested because it was applied using real (as opposed to simulated) data, 311

but Kolmodin et al. (2002) made a plea in their conclusion for the development of alternative 312

procedures that avoid using functions of the data in the sampling model. Calus et al. (2004) 313

proposed to estimate environment values via an iterative procedure whereby the estimated 314

environmental effect in a given iteration replaces the value of the covariate in the next. Using 315

computer simulation, the authors observed a negligible reduction in bias of estimates of variance 316

components using this approach when compared with the standard use of replacing covariates by 317

phenotypic averages. They suggested replacing environment values by estimates of herd effects 318

obtained from a large number of animals per herd, instead of from herd-years, at the cost of losing 319

information on G x E interaction.320
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The overall picture that emerges is that the conventional approximations do not always produce 321

reliable results, and it is difficult to decide a priori how they behave in any given dataset/modeling 322

scenario. In contrast, the method that we propose here avoids ad-hoc constructs, it is theoretically 323

coherent, easy to implement, and leads to adequate inferences. An important caveat associated with 324

the reaction norm model with unknown covariates is that of identifiability of parameters in the 325

likelihood. This is a technically elaborate problem which is presently under investigation and 326

hopefully will be reported elsewhere. 327

328

Implications329

The reaction norm model is becoming a popular approach for the analysis of G x E interactions330

because it can deal with a very large number of environmental levels with few parameters. The 331

unknown effects of environments (environmental values) are commonly used as an environmental 332

gradient in reaction norm models. They are typically estimated using the phenotypic means of the 333

environments and subsequently used in lieu of the true, unknown covariates when fitting the model. 334

This approach leads to biased inferences. The present study provides a method to infer parameters 335

in a reaction norm model with unknown environmental values. The proposed method estimates336

environmental values simultaneously with the other parameters in the reaction norm model. The 337

method was tested using simulated data and it is shown to lead to estimates of parameters with no 338

detectable bias and with smaller mean squared errors than those obtained using the conventional 339

approximations.340

341

342

343
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Table 1. Correlations between true herd-year effects and herd-year phenotypic means, r(h, hm), and 

between true herd-year effects and herd-year effects estimated from the proposed method 

r(h, hE), averaged over 20 replicate simulations.

Correlation mean Range
r(h, hm) 0.901 0.861 – 0.940
r(h, hE) 0.970 0.955 – 0.980
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Table 2.Mean and standard error of estimates of variance components (over 20 replicate 

simulations) ( 2

0aσ =variance of the level and 2

haσ = variance of the slope of additive genetic reaction 

norm, 
haa ,0

σ = covariance between the level and the slope, and 2
eσ =residual variance). 

Model 2

0aσ
2

haσ haa ,0
σ 2

eσ
Realized* 100.4±0.04 1.01±0.00 5.11±0.06 298.3±0.00
M1 101.7±1.10 1.02±0.03 5.04±0.11 297.1±0.87
M2   99.3±1.05 1.01±0.00 5.00±0.08 298.5±0.87
M3 111.5±1.44 0.58±0.00 3.68±0.11 305.5±0.70

*Realized: the variance components were calculated from the realized values of the simulation.

  M1: model with unknown covariate of reaction norm (the proposed approach).

  M2: model using true herd-year effect as covariate of reaction norm.

  M3: model using phenotypic mean of herd-year as covariate of reaction norm.
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Figure 1. Heritability as a function of herd-year value (covariate of the reaction norm) in unit of 

standard deviation, based on the true variances (True) and the variances estimated from the model 

with unknown covariate of reaction norm (M1, the proposed approach), the model using true herd-

year effect as covariate of reaction norm (M2), and the model using phenotypic mean of herd-year 

as covariate of reaction norm (M3).
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