

EQUOL AND ENTEROLACTONE

Two mammalian phytoestrogens with estrogenic potency found in organically produced milk

Steffen Adler & Håvard Steinshamn, Norwegian Institute of Bioeconomy Research

Background

- Plant derived compounds similar to estradiol
- May induce or inhibit the response on hormone receptors in animals or humans
- May impair fertility in sheep
- In cattle effects not consistent
- In humans: Protect against cancers, prevent osteoporosis, function as antioxidant, negative side effects

Background

Protect against cancers, prevent osteoporosis, function as antioxidant, negative side effects.

Daidzein

Background

Enterolactone

Enterolactone is anti-carcinogenic and lignans may be protective of cardiovascular disease (Adlercreutz, 2007; Peterson et al., 2010).

Background

Coumestans

Coumestrol¹⁰

Maximum tolerable daily intake of in humans 22 μ g per kg of body mass (Shaw, 2009). Positive health effects not clear.

Objective

Study the relationship between intake of forage legumes and milk content of equal and enterolactone in organically managed dairy cows.

Material

- Grazing experiment, Norway 2009
- Silage feeding experiment, Norway and Sweden 2008
- Metabolism study, silage, Norway 2007/2008
- Farm study, Norway 2007-2008

Analysis methods

 Liquid chromatography-tandem mass spectrometry technique (Micromass, Manchester, UK) with standard addition (Steinshamn et al., 2008)

Results and discussion: Isoflavone intake

Results and discussion: Phytoestrogens in milk

Results and discussion: Farm study

Key results and discussion: Individual differences

Figure 1. Variation in equol concentration ($\mu g/kg$) in milk among cows fed: (a) 2-cut birdsfoot trefoil-grass silage (B2), 2-cut red clover-grass silage (R2), or 3-cut red clover-grass silage (R3), and (b) short-term ley silage (S3) or long-term ley silage (L3).

Results and discussion: Metabolism

- Isoflavones and lignans were extensively metabolized in the rumen on all diets
- 11% of dietary formononetin and daidzein recovered in omasum, mainly as equol
- Intestinal metabolism was less severe
- Main route of excretion was through feces and urine
- Unknown enterolactone precursors other than matairesinol and secoisolariciresinol in forages

Conclusions

- High concentrations of equol in "red clover milk" (organic milk) (Antignac et al., 2003; Mustonen et al. (2009)
- More enterolactone in pasture milk
- Unknown enterolactone precursors
- Small amounts of coumestrol
- Humans consuming soy products have a higher isoflavone intake than humans consuming red clover milk
- But not all humans can produce equol
- Equal has higher estrogen potency than isoflavones
- Red clover milk may be a functional food, but negative side effects possible

Implications

- Plant derived phytoestrogens can cause estrogenic and antiestrogenic effects in animals and humans
- Red clover milk has high concentration of equol and may be considered a functional food, but possible health effects may depend on many factors
- Organically produced milk is not necessarily based on red clover feed

NIBIO

NORSK INSTITUTT FOR BIOØKONOMI