

Monika Schneider¹^{*}, Eucebio Perez^{1,2}, Freddy Alcon^{1,3}, German Trujillo^{1,3}, Romero Choque^{1,4}, Joachim Milz³, Christian Andres¹ ¹Research Institute of Organic Agriculture (FiBL), Switzerland; ²Foundation Piaf – El Ceibo, Bolivia; ³Ecotop Consult, Bolivia, ⁴Catholic University Carmen Pampa, Bolivia

Cocoa Yield Development in Alto Beni, Bolivia: Influence of Sites, Varieties and Years

Background

> Essential limiting factors of cocoa productivity are pests

- and diseases.
- > To develop control measures for organic cocoa produ-
- cers, knowledge of yield development and pest and disease dynamics are important.

Objective

- Address problems of cocoa producers in Alto Beni, Boli-
- via, with a Participatory Technology Development (PTD)

Material and methods

roach.

- > Problems identified by farmers' survey:
 - 1. Pests, i.e. cocoa mirid (Monalonion dissimulatum), and diseases, i.e. frosty pod rot (Moniliophthora roreri) and black pod (Phytophthora spp.).
 - 2. No reliable recommendations about varieties and field management.
- > Trials to address problems:
 - 1. On-farm trials assessing 16 cocoa varieties (established in 2004). Production system: simple organic agroforestry system with cocoa, zero external input.
 - Documentation of best practices of four successful cocoa farmers (2012 only). Production system: simple to complex organic agroforestry system with low to zero external input.

Results

- In area IIb of Alto Beni (site: "Brecha F"), local selections IIa 58, III 06 and III 13 show both highest productivity and most rapid yield development (Figure 1).
- IIa 58, III 06 and III 13 produce > 75% of their yield until end of June (half month 12) thus they escape the 2nd peak of pests and diseases incidences in the half month 15 (Figure 1B).
- > With good practices, one can produce more than 1 t ha⁻¹ of organic cocoa beans (Figure 2).
- Cocoa mirid, and the in Alto Beni novel disease frosty pod rot, can cause up to 50% loss of harvest (Figure 2) despite following good practices.

Conclusions/Outlook

- For area IIb, varieties IIa 58, III 06 and III 13 seem to be promising to achieve high yields with little losses due to pests and diseases incidences.
- > Replication of the trials in different years and weather conditions are essential to make our results more solid.
- Variety recommendations cannot be made until there are results about susceptibility to the novel disease frosty pod rot.
- > The development of organic pest and disease control measures is essential to sustain productivity of organic cocoa farmers.

Funding

This project is funded by Biovision Foundation, Coop Sustainability Fund, Liechtenstein Development Service (LED) and the Swiss Agency for Development and Cooperation (SDC).

Figure 1: Assessment of 16 cocoa varieties in area IIa of Alto Beni, Bolivia, 2011; A: Productivity, red line = average of 16 varieties, closed bars are beans from partly diseased fruits marketed as 2nd quality. B: Precocity and pest and disease dynamics, orange lines are introduced clones, black, red and green lines are local selections of areas IIa, III and IV of Alto Beni, respectively; Dates are displayed as half months, i.e. 5 = 1st half of March, 7 = 1st half of April, etc.

Figure 2: Cocoa harvest (A) and number of healthy and diseased fruits harvested per tree (B) in four high yielding farmers' fields, Alto Beni, Bolivia, 2012.