Agricultural Sustainability Progress and Prospects in Crop Research

Edited by Gurbir S. Bhullar and Navreet K. Bhullar

This work was inspired by

the celebration of golden jubilee year of establishment

of

Punjab Agricultural University (PAU), India which pioneered the green revolution on Indian sub-continent

and

we dedicate this book to

all the hard working farmers

and dedicated agricultural researchers

across globe

Agricultural Sustainability

Progress and Prospects in Crop Research

Edited by Gurbir S. Bhullar and Navreet K. Bhullar Swiss Federal Institute of Technology Zurich, Switzerland

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an Imprint of Elsevier

Contents

Contributors	xiii
Foreword	XV
Preface	xvii

Section I Agricultural Biodiversity, Organic Farming, and New Crops

1.	Functional Agrobiodiversity: The Key to Sustainability?
	Paolo Bàrberi

1.	Introduction			
2.	Agricultural Sustainability at the Onset of the Third Millennium			
3.	Agrobiodiversity: A Conceptual Framework	4		
	3.1 Genetic Agrobiodiversity	5		
	3.2 Species Agrobiodiversity	6		
	3.3 Ecosystem Agrobiodiversity	7		
	3.4 Limitations of the OECD Definition of Agrobiodiversity	7		
4.	From Agrobiodiversity to Functional Agrobiodiversity	8		
	4.1 Functional Biodiversity: A Plethora of Definitions	8		
	4.2 Functional Agrobiodiversity: A Methodological Approach	9		
5.	Functional Agrobiodiversity in Practice	11		
	5.1 Genetic Agrobiodiversity	11		
	5.2 Species Agrobiodiversity	12		
	5.3 Ecosystem Agrobiodiversity	14		
6.	Functional Agrobiodiversity: Opportunities and Bottlenecks	15		
	6.1 What Could Favor Functional Agrobiodiversity?	15		
	6.2 What Could Hinder Functional Agrobiodiversity?	16		
7.	Conclusions	17		
Ac	knowledgements	17		
Re	eferences 17			

2.	Organic Agriculture – Driving Innovations in Crop Research
	Dionys Forster, Noah Adamtey, Monika M. Messmer, Lukas Pfiffner,
	Brian Baker, Beate Huber, and Urs Niggli

1.	Introduction	21
2.	Soil Fertility and Organic Farming in the Tropics—Challenges	
	and the Way Forward	23

v

3.	Plant Breeding Strategies for Organic and Low External		
	Input Farming	26	
4.	Functional Biodiversity and Pest Management in Organic Farming	30	
5.	Agricultural Innovation—The Need for Transdisciplinary		
	Research and Development	33	
6.	Outlook	37	
Ack	Acknowledgements 38		
Ref	erences	38	

3. Guar: An Industrial Crop from Marginal Farms

N. A. Kuravadi, S. Verma, S. Pareek, P. Gahlot, S. Kumari, U. K. Tanwar, P. Bhatele, M. Choudhary, K. S. Gill, V. Pruthi, S. K. Tripathi, K. S. Dhugga, and G. S. Randhawa

1.	Introduction	47
2.	Origin, Genetics, and Breeding	48
3.	Water and Salt Stress	49
4.	Seed Composition	50
5.	Galactomannan Properties, Biosynthesis, and Degradation	50
6.	Preparation and Applications of Guar Gum	52
	6.1 Medicinal Uses	52
7.	Biotechnology for Guar Gum Modification	55
8.	Summary and Future Prospects	56
Ref	References	

Section II Effective Management of Resources (Nutrients and Water) and Crop Modelling

4.	Nitrogen Use as a Component of Sustainable Crop Systems
	Amritbir Riar and David Coventry

1.	Introduction		
2.	2. Principles of Crop Sustainability in Rainfed Farming		
	2.1 Nitrogen Use Efficiency (NUE)	64	
	2.2 Water–N Relationship	65	
	2.3 Crop Rotations	66	
	2.4 Fertilization to Optimize Yields	67	
	2.5 No-Tillage Systems	67	
3.	Improving NUE and On-Site N Management	68	
	3.1 Pre- and Post-Anthesis Water Use and N Uptake	68	
	3.2 Agronomic Strategies to Improve NUE	69	
4.	Targeting Crop Sustainability	72	
Ac	Acknowledgement References		
Ret			

5.

Pre Or	even 'gan	ial of Management Practices and Amendments for ting Nutrient Deficiencies in Field Crops under ic Cropping Systems	
Sul	khde	v S. Malhi, Tarlok S. Sahota, and Kabal S. Gill	
1.	Intro	oduction	77
2.	Mar	agement Practices	79
	2.1	Crop Diversification/Rotation	79
	2.2	Crop Species/Cultivars	80
	2.3	Crop Residue Return	81
	2.4	Intercropping Non-Legumes with Legumes	81
	2.5	Mixed Farming (Dairy, Beef Cattle or Swine, and Cropping)	
		Systems	83
	2.6	Agroforestry (Integration of Trees with Field Crops or	
		Animal Production Systems)	84
	2.7	Summer Fallow	84
3.	Agri	cultural Organic Amendments	84
	3.1	Compost/Manure	85
	3.2	Green Manure	87
4.	Indu	strial Organic Products/Byproducts	89
	4.1	Alfalfa Pellets	89
	4.2	Thin Stillage, Distiller Grain (Byproduct of Ethanol),	
		Fish Food Additive, and Glycerol (Byproduct of Biodiesel)	89
	4.3	Wood Ash (Byproduct of Forest Industry)	90
5.	Min	eral Amendments	91
	5.1	Phosphate Amendments	91
	5.2	Lime, Gypsum, and Elemental S	92
	5.3	Biological Fertilizers/Biofertilizers (Microbial Products/	
		Inoculants)	93

Inoculants)936. Summary of Research Findings, Gaps, and Future Needs957. Conclusions97References98

6. Effective Management of Scarce Water Resources in North-West India

Sudhir-Yadav, Balwinder-Singh, Elizabeth Humphreys, and Surinder Singh Kukal

1.	Intr	oduction	103	
2.	The Development of Water Scarcity for Irrigation			
3.	Rea	Reasons for Ground Water Depletion in NW India		
	3.1	Increase in the Area Under Cultivation	106	
	3.2	Shift in Cropping Patterns	106	
	3.3	Injudicious Use of Surface and Ground Water	108	
	3.4	Degradation of Ground Water Quality	108	
	3.5	Rainfall Distribution and Variability	109	
	3.6	Energy Subsidies for Farmers	109	

4.	"Rea	al" Water Savings	111
5.	Imp	roving Management of Water Resources	111
	5.1	Reducing Water Losses from Canal Networks	112
	5.2	Conjunctive Use of Surface and Ground Water	113
	5.3	Artificial Recharge of Groundwater	113
	5.4	Improved Crop Management Technologies	114
	5.5	Rainfall Forecasting	119
	5.6	Policies to Improve Water Management: Water Pricing	
		and Allocation	120
6.	Con	Iclusions	120
References			121

7. Modeling for Agricultural Sustainability: A Review

Mukhtar Ähmed, Muhammad Asif, Arvind H. Hirani, Mustazar N. Akram, and Aakash Goyal

1.	Intr	oduction	127
2.	Maj	or Simulation Models	130
	2.1	APSIM (Agricultural Production System Simulator)	130
	2.2	Ceres Wheat	130
	2.3	DSSAT (Decision Support System for Agrotechnology	
		Transfer)	132
	2.4	SALUS (System Approach to Land Use Sustainability)	133
	2.5	NDICEA (Nitrogen Dynamics in Crop Rotation in	
		Ecological Agriculture)	134
	2.6	Rhizome: A Model of Clonal Growth	135
	2.7	LINTUL (Light Interception and Utilization Simulator)	136
	2.8	WaTEM (Water and Tillage Erosion Model)	140
	2.9	SPAC (Soil Plant Atmosphere Continuum)	141
3.	Out	look	143
References			143

Section III

Molecular, Biotechnological, and Industrial Approaches for Enhancement of Crop Production and Quality

8.	Biotechnological Approaches for Increasing Productivity
	and Sustainability of Rice Production
	D. S. Brar and G. S. Khush

1.	Adv	ances in Rice Biotechnology	152
2.	Арр	roaches for Increasing Yield Potential of Rice	153
	2.1	Developing Hybrids with Higher Yield Potential	154
	2.2	Introgression of Yield-Enhancing Loci/Wild-Species Alleles	155
	2.3	Pyramiding of Cloned Genes/QTLs for Yield-Related Traits	156
	2.4	C ₄ Rice–Modifying Photosynthetic Systems to Raise Yield	157

	3.	Mapping Genes/QTLs and Marker-Assisted Breeding in Rice	158
		3.1 Breeding Against Biotic Stresses	159
		3.2 Breeding for Tolerance to Abiotic Stresses in Rice	161
		3.3 Other Approaches to Facilitate MAS	164
	4.	Broadening the Gene Pool of Rice Through Wide Hybridization	164
	5.	Role of Anther Culture in Rice Breeding	165
	6.	Genetic Engineering Approaches for Sustainable Rice	
		Production and Enhanced Nutritional Qualities	167
	7.	Advances in Functional Genomics Support Rice Breeding	170
	Re	ferences	171
9.	Bi	ofortification of Staple Crops	
		shal Chugh and Harcharan S. Dhaliwal	
	1.	Introduction	177
		1.1 Magnitude and Causes of Micronutrient Malnutrition	177
		1.2 Strategies for Alleviating Micronutrient Malnutrition	179
	2.	Biofortification: A New Tool to Reduce Micronutrient	
		Malnutrition	179
		2.1 Conventional and Molecular Breeding Approaches for	
		Biofortification	180
		2.2 Genetic Engineering Approaches	183
		2.3 Physiological and Molecular Basis for Micronutrient Accumulation in Grains	184
		2.4 Sequestration of Mineral in Endosperm	186
		2.5 Bioavailability of Micronutrients	186
	3.	Micronutrient Concentration and Grain Yield	189
	3. 4.	Conclusion	189
		ferences	105
	Ne	lefences	190
10.		utrient-focused Processing of Rice	
	Na	dina Müller-Fischer	
	1.	Introduction	197
	2.	Nutrient Composition of Rice Fractions	198
		2.1 Macronutrients	199
		2.2 Micronutrients	200
	3.	Health Problems in Rice Core Regions	201
	4.	Rice Processing	202
		4.1 Drying	203
		4.2 Parboiling	205
		4.3 Rice Milling	205
	5.	Potential usages of Edible Co-products	212
		5.1 Rice Brokens—Case Study: Reconstituted Rice	212
		5.2 Rice Bran	213
	6.	Future Scenarios of Nutrient-Focused Rice Processing	216
		knowledgements	217
	Re	ferences	218

ix

11. Virus Resistance Breeding in Cool Season Food Legumes: Integrating Traditional and Molecular Approaches

Shalu Jain, Kevin McPhee, Ajay Kumar, Reyazul Rouf Mir, and Ravinder Singh

1.	Coc	ol Season Food Legumes	221
2.	Met	hods of Detecting Plant Virus Diseases	223
	2.1	Protein-Based Detection Methods	223
	2.2	Molecular Methods in Plant Virus Detection	226
3.	Sou	rce of Resistance to Viruses in CSFLs	227
	3.1	Utilization of Non-Host Resistance	227
	3.2	Screening Germplasm for Host Resistance to Develop	
		Virus Resistant Cultivars	229
	3.3	Mode of Inheritance of Resistance	231
4.	Mo	ecular Tools for Accelerating Virus Resistance Breeding	232
	4.1	Molecular Markers	233
	4.2	Genetic Linkage Maps	234
	4.3	Towards Marker-Assisted Selection (MAS) for Virus	
		Resistance Breeding	235
	4.4	Potential of Comparative Genomics for CSFLs	237
Acknowledgements		239	
References		239	

Section IV Expert Advice on Policy and Developmental Aspects

12. Talking Agricultural Sustainability Issues—an Interview with Dr. Gurdev Khush Gurbir S. Bhullar

13. Economics and Politics of Farm Subsidies in India S. S. Johl

1.	Consumer Subsidies	254
2.	Agricultural Subsidies	256
3.	Policy Prescriptions	260

14. Public-Private Partnership and Policy Reforms for Effective Agricultural Research, Development, and Training: A Viewpoint

Sant S. Virmani

1.	The Issue	263
2.	Strengths and Weaknesses of Public, Private, and NGO Sectors	264
3.	International Collaboration	265

X

	 Mechanism(s) for Establishing Public, Private, and NGO Partnership Policy Support 	265 267
15.	Contract-Farming for Production and Procurement of	
	Mint—Lessons from Personal Experience Tarlok S. Sahota	
	1. Introduction	269
	 2. Effective Communication – Foundation for a Good Start 3. Start on a Low Scale and Build Confidence in the Community 	269
	Before Expanding	270
	4. Cluster Approach for Expansion	271
	5. Overcoming our Own Inhibitions for Expansion	271
	6. Expansion was Required to Conquer Opposition from	
	Within the Company	272
	7. Balancing Company's and Farmers' Interests	273
	8. Research and Development Support for Quick Expansion	273
	9. Farmers First	277
	10. Meeting Quality Goals	277
	11. Advisory and Extension Services	280
	12. Synergy with Other Organizations	280
	13. Concluding Remarks	281
	Acknowledgements	281
	References	282
Index	ζ	283

xi

With an increase in the frequency of occurrence of extreme weather events such as drought, flood, tsunami, and sea level rise, there is also increased volatility in the price of major staple grains in the international market. There was a big rise in the price of rice, wheat, and other cereals in 2008, as a result of which nearly a billion additional children, women, and men went to bed hungry. In 2012 again there is increased price volatility caused partly by the drought in North America and also by the use of corn for the production of ethanol. Hence, for sustainable food security, it is important that we have sustained production of adequate quantities of food grains. This will call for an "evergreen" revolution in agriculture leading to the improvement of productivity in perpetuity without associated ecological harm.

For a long time, sustainability was measured only in economic terms. After the 1972 Stockholm conference on the human environment, environmental parameters were also added to measure sustainability. Fifty years ago Rachel Carson, in her book *Silent Spring*, drew attention to the harmful effects of excessive use of pesticides. Also the loss of biodiversity resulted in some cases in genetic homogeneity in crops, thereby increasing genetic vulnerability to pests and diseases. This was clear during the potato famine of the 1840s in Ireland.

In addition to economic and environmental sustainability, social sustainability has also become important. With increasing emphasis on research for private profit rather than for public good, there will be social exclusion in access to technology depending on the purchasing power of the small farmer. The year 2014 has been declared by the UN as "International Year of Family Farming." The aim is to rekindle and sustain family farming around the world. In developing countries, farming is not only a way of life but a means to livelihood. Agriculture therefore will have to help in generating more income and more jobs, in addition to more food.

In the context outlined above, this book on agricultural sustainability, edited by Gurbir S. Bhullar and Navreet K. Bhullar, is a timely contribution. The book covers different aspects of sustainability in a holistic manner. It also shows how to improve the efficiency of the use of market-purchased inputs such as mineral fertilizers. Sustainable agriculture is the pathway to avoid price volatility and human suffering. I therefore hope that this book will be widely read and used by professionals and policy makers as well as farmers and farmdwellers. We owe a deep sense of gratitude to Gurbir and Navreet, as well as to the authors of the chapters, for their labor of love toward sustainable advances in agricultural productivity.

> Prof. M. S. Swaminathan Member of Parliament of India (*Rajya Sabha*) Emeritus Chairman, M S Swaminathan Research Foundation

Preface

Provision of sufficient amounts of nutritious food for the ever-increasing global population is probably the largest challenge facing mankind. Despite a number of hunger eradication programs a large portion of the human population still remains undernourished. Land degradation and changes in land use patterns limit the area that could be brought under crop cultivation. Diminishing stocks of natural resources (fossil fuels and nutrients such as phosphorus) question the continuation of current agricultural practices, which depend heavily on high-energy inputs. The ongoing environmental changes are projected to seriously hamper agricultural production by increased frequency and intensity of extreme events such as drought and floods, more so in underprivileged parts of the world. Anthropogenic activities have not only contributed towards the climatic changes but have also resulted in degradation of natural resources (e.g., water and air pollution) and loss of biodiversity. Biodiversity losses-that affect a number of ecosystem services—are not only limited to natural habitats; with intensive monoculture farming on a large scale and use/misuse of cultivation and pest control practices, the agricultural landscape has also been deprived of a lot of diversity at species, varietal, and microbial scales. It is also noteworthy that, with changing food habits, we are increasingly shrinking the number of species from which we source a major portion of our food. For example, only 12 plants and five animal species currently contribute 75% of the world's food production; and 60% of plant-based calories and proteins are obtained from only three crops: namely, rice, maize, and wheat.

Agriculture being the primary anthropogenic activity for provision of basic needs for human beings, it is no surprise that agricultural sustainability is one of the most discussed subjects of our times. This book, *Agricultural Sustainability: Progress and Prospects in Crop Research*, presents the views of agricultural experts from across disciplinary and geographical boundaries. The 15 chapters—contributed by internationally recognized scientists from Europe, North America, Australia, and Asia—have been grouped into four distinct sections, each representing a crucial thematic area. The vast array of subject areas discussed in the book range from agrobiodiversity to biotechnology, from marginal crops to industrial approaches, from resource conservation to nutritional enhancement of crops and crop products, and from strengthening of human resources for agricultural research and development to economic and political priorities for effective production, marketing, and distribution of agricultural commodities. The authors of most of the chapters have experienced agricultural research and/or development both in developed and developing worlds

and hence benefit from a wider vision in presenting a balanced view. As far as possible, the language of the chapters has been kept simple so that educated non-expert readers may enjoy reading and may benefit from the information provided herein. This book will serve as an educational tool for budding scientists, will provide a comprehensive overview for advanced researchers, and will lay guidelines for important policy decisions.

The Editors

Agricultural Sustainability Progress and Prospects in Crop Research

By **Gurbir S. Bhullar**, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland and **Navreet K. Bhullar**, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

AVAILABLE JANUARY 2013!

ISBN: 9780124045606

Price: \$79.95 / €57.95 / £48.99

Hardcover / 240 pages

Collaboratively written by a number of international experts, this work covers a vast array of topics pertaining to agricultural research (see contents below). In addition to providing an overview of scientific solutions for enhancing crop productivity and conservation of natural resources, the book also reflects on the economic policy priorities for attaining sustainability.

- Provides cutting edge scientific tools and available technologies for research
- Addresses the effects of climate change and the population explosion on food supply and offers solutions to combat them
- Written by a range of experts covering a broad range of agriculture-related disciplines

Visit store.elsevier.com to order your copy!

AVAILABLE JANUARY 2013!

ISBN: 9780124045606

Price: \$79.95 / €57.95 / £48.99

How to order within North America:	How to order outside of Nort	h America:	
Order online at: http://elsevierdirect.com Call: 1- Call: 800-545-2522 Fax: 1-Fax: Fax: 800-568-5136 E-Mail: usbkinfo@elsevier.com	Order online at: http://elsevierdirect Call: +44 (0)1865 844644 Fax: +44 (0)1865 853301 E-Mail: uktradeorders@elsevier.com		
Mail: Elsevier, Customer Service, 11830, Westline Industrial Drive St. Louis, MO 63146	Mail: Elsevier Books Customer Services, The Boulevard, Langford Lane, Kidli Oxford. OX5 1GB	ngton	
Book Title	ISBN:		
Please charge my: Visa DAsterCard American Express Discover			
Subtotal	Your State Sales Tax		
Handling**	Total		
Card No	Exp. Date		
Cardholder Name	Signature		
I have enclosed a check payable to Elsevier			
Name			
Institution			
Department			
Street Address	City	State	Zip
Phone	Fax		
Email Address			

** US customers: Free shipping for all U.S. check and credit card orders. All U.S. orders must include your local state sales tax. Price are subject to change without notice. Canadian Customers: please pay by credit card or in U.S. funds and include 7% GST and please add a shipping and handling fee (ground shipments) of \$17.00 for 1 title and \$18.00 for 2 or more titles.

Overseas customers: please pay by cheque drawn in sterling on a UK bank. Postage: UK & Europe £2.95, ROW £10.00. Please allow 28 days for delivery. If books are not available within 28 days your money will be refunded We aim to deliver your books within 5 days.

Further Information: All details are correct at time of going to press but may be subject to change without further notice.

Elsevier retains certain personal information about you in hard copy form and on computer. It will be used to inform you about goods and services from Elsevier and its associated companies. Please tick this box if you would not like to receive this information.