

Estimating nitrogen supply and cereal crop yield in organic crop production

Jørgen E. Olesen and Peter Sørensen

Foulum

Long-term experiments with arable crop rotations

5 % clay 950 mm 10 % clay 700 mm 15 % clay 600 mm

Jyndevad

Experimental factors

Experimental factors (1997-2004):

- Production system (organic with and without grassclover as green manure)
- Catch crops (with: +CC, without: -CC)
- Manure (with: +M, without: -M)

Experimental factors (2005-):

- Production system (conventional, organic with and without green manure)
- Catch crops (with: +CC, without: -CC)
- Manure/fertiliser (with: +M, without: -M)

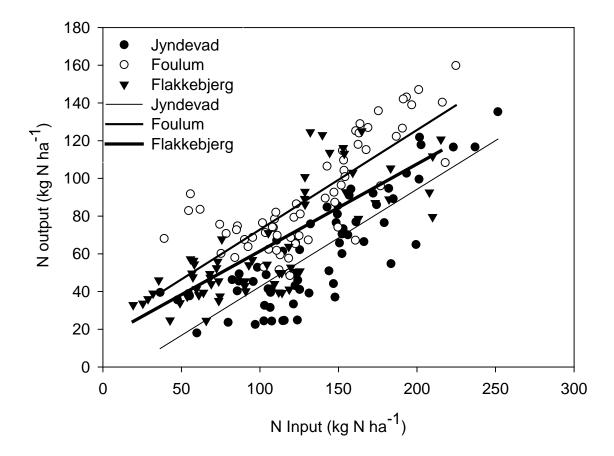
Experimental treatment combinations (since 2005)

Crop	Production system	-CC	+CC	+CC
rotation		+M	-M	+M
02	Green manure-cash crop- <u>o</u> rganic	Х	Х	Х
O4	Cash crop- <u>o</u> rganic	Х	Х	Х
C4	Cash crop-conventional	Х		Х

M: animal <u>manure</u> (organic) or <u>mineral</u> fertilizer (conventional). CC: <u>catch crop</u>, '+' is with catch crop and '-' is without catch crop.

	Field	02	O4	C4
1 st course	1	S. barley:ley	Spring oat ^{CC}	
1997-2000	2	Grass-clover	Winter wheat ^{CC}	
	3	Winter wheat ^{CC}	Winter cereal ^{CC,1}	
	4	Pea/barley ^{cc}	Pea/barley ^{cc}	
2 nd course	1	S. barley:ley	Winter wheat ^{CC}	
2001-2004	2	Grass-clover	Spring oat ^{CC}	
	3	Winter wheat ^{cc}	S. barley ^{cc}	
	4	Lupin/barley ^{cc}	Lupin	
3 rd course	1	S. barley:ley	S. barley ^{CC}	S. barley ^{cc}
2005-2009	2	Grass-clover	Faba bean ^{CC,2}	Faba bean ^{CC,2}
	3	Potato	Potato	Potato
	4	Winter wheat ^{CC,3}	Winter wheat ^{CC,3}	Winter wheat ^{CC,3}

N-fixing catch crops in organic crop rotations (O2 and O4) Non N-fixing catch crops in the conventional rotation (C4)



Nitrogen flows at Foulum (2005-2008)

Cropping system	BNF	Input	Output	Surplus	Recycled Leachin		Neff
	kg N/ha	kg N/ha	%				
02/+M/-CC	84	104	69	34	43	39	71
O2/-M/+CC	88	108	55	53	138	43	51
<u>O2/+M/+CC</u>	86	106	70	36	57	37	69
O4/+M/-CC	42	132	85	47	46	57	64
O4/-M/+CC	61	81	78	4	86	27	118
O4/+M/+CC	55	144	98	46	81	46	70
C4/+M/-CC	55	178	130	48	80	55	73
C4/+M/+CC	54	174	132	42	93	36	76

Nitrogen yield (output) at rotation level (2005-2008)

Sources of nitrogen for crop N supply

› Long-term:

- > Soil organic matter (N in humus)
- > Medium-term
 - > Added organic N over the crop rotation(s) (previous 10 years)
- > Short-term
 - > Grass-clover or other green manure crops
 - > Catch crops (with and without legumes)
 - > Ammonium-N in manure

AARHUS UNIVERSITY

Model of yield of cereals and other non-legumes

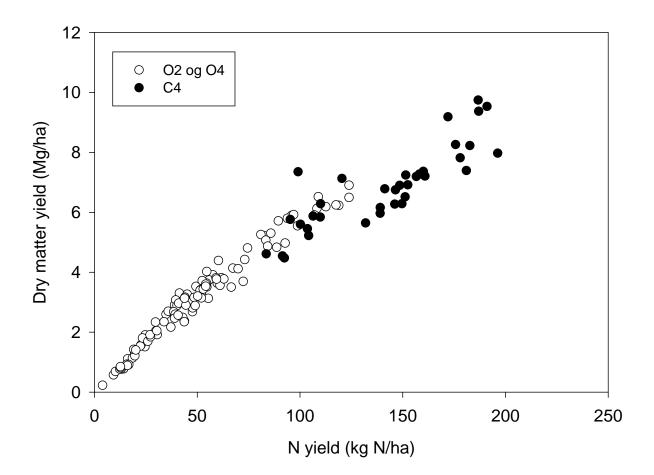
The dry matter yield (Y_d) is assumed to be a non-linear function of N uptake: $Y_d = b_1 N_w + b_2 N_w^2$ b_1 and b_2 are assumed to depend on crop type only.

The N-uptake in grain with weeds (N_w) is estimated from the following equation:

 $N_w = N_u \left(c_1 W_a + c_2 W_p \right)$

where W_a and W_b is the biomass of annual and perennial weeds, respectively in proportion of total biomass at heading in the cereals.

The N-uptake in grain (N_u) in a weed-free situation is estimated from the following equation:

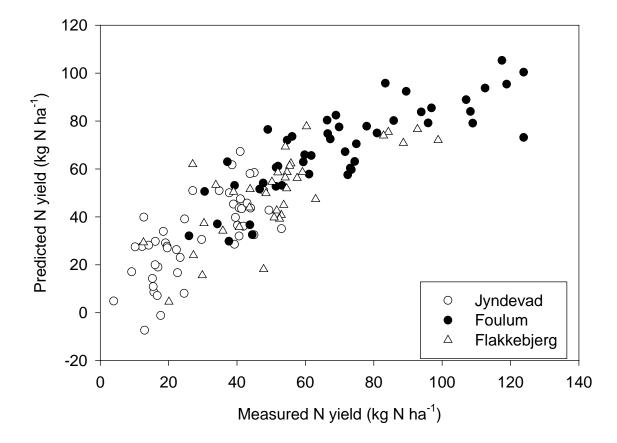

 $N_u = a_1 N_s + a_2 N_f + a_3 N_c + a_4 N_g + a_5 N_a$ where

- *N*_g Nitrogen in pastures and green manure crops, which may be one or more years of grass-clover, lucerne etc.
- *N*_c Nitrogen returned in catch crops during winter and spring. This is estimated from above-ground measurements only.
- *N*_r Nitrogen returned in other crop residues (primarily straw and stubble). This is estimated from above-ground measurements only.
- *N*_a Ammonium N applied in manure.
- N_m Total N applied in manure.
- $N_{\rm s}$ Soil total N in 0-25 cm depth.

The medium-term effects are estimated by taking the average of the contributions of organic matter inputs over the past 10 years (excluding the previous year), i.e. $N_f = \sum N_g + N_c + N_r + N_m - N_a$

Grain dry matter yield versus grain N yield

Response of grain N yield to N input and weeds


Variable	Winter wheat	Spring barley
Soil N	0.0036	0.0038
Annual organic N inputs	0.19	0.20
N in catch crops	-	0.37
Ammonium-N (Jyndevad)	0.18	0.56
Ammonium-N (Foulum)	0.56	0.46
Ammonium-N (Flakkebjerg)	0.40	0.45
Weeds	-0.53	-1.06

Response to N input is kg N in yield per kg N in input Response to weeds is kg N in yield per % weed at flowering

 R^2 for winter wheat is 0.74 and for spring barley 0.69

Predicted N yield in winter wheat

Estimated mean effects on grain yield in the crop rotation experiment

	Wir	nter wheat	Spri	ng barley
	Input	Yield (Mg/ha)	Input	Yield (Mg/ha)
Soil organic N (kg N/ha)	4732	1.11	4733	1.17
Rotation N input (kg N/ha)	127	1.56	130	1.69
Catch crop N (kg N/ha)			13	0.31
Manure ammonium (kg N/ha)	55	1.43	30	0.90
Weeds (%)	10	-0.34	4	-0.25
Total		3.76		3.81

AND LODIE OF ANT CASE MARKEN AND TO TRANSPORT

HighCrop Crop rotation planner Excel-spreadsheet

	Mail 20130308_TNT_Crop_Model(34)_JEO [Read-Only]										
	- 24	A E	F	G	Н	I	J	К		AD AE	A AG
									Bruges til		
									reg. af		
									sum af		
er		Scenarie:	۸						ukrudtdæ		
	5	Scenarie.	A						kning.		Nøgl
	6							Input			
	7				Ukrudtsstrategi						
										Faktiske	Faktiske
									Sum	udbytte (tons	udbytte
									dækning	TS pr. ha) e.	(tons TS pr.
			Planterester	Forud for	Efter etablering				(100%=ing	række afstd.	ha) e.
		Ar Sædskifte? (vælg)	(Vælg)	etablering (Vælg)	(Vælg)	Efter høst (Væl	g)	TYPE (vælg)	en reg.)	reg	Ukrudt reg.
	9 10	1 Majs	Ingen halm	Pløjning + falsk såbed	Radrensning	Stubharvning_A1		Korsblomstret	100	7.8	7.8
	11 12	2 Vinterrug	Halm snittet	Pløjning	Blindstrigling + alm. ukrudtsharvning	Stubharvning_A2		Vinterrug	100	3.2	3.2
	13	3 Havre	Halm fjernet	Stubharvning +	Blindstrigling + alm.	Pløjning_A3		Korsblomstret			
	14			pløjning	ukrudtsharvning				100	4.8	4.8
	15 16	4 Vårsæd (korn undt. Havre)	Halm fjernet	Stubharvning + pløjning	Ingen	Stubharvning_A4		Korsblomstret	100	5.4	5.4
	17	5 Vintersæd (korn undt rug)	Ingen halm	Stubharvning +	Inden	Stubbaryning A5		Vinterrug			

Conclusions

- Manure application is the most important factor for enhancing yields in organic crop production
- Grass-clover and catch crops have both short- and long-term effects on cereal grain yields.
- > Grain yields can be increased by
 - > Increasing inputs of N from BNF (green manure, catch crops)
 - > Converting organic N to mineral in manures applied in spring
 - Maintaining low weed pressure
- Effects of different sources of N can be reliably predicted using a simple equation that can be used in strategic planning

Acknowledgements to ICROFS and Organic RL