UNIVERSITY OF COPENHAGEN

Systemic Approaches to Pest Management without Pesticides

-Biological control of insect pests with predators and parasitoids

Lene Sigsgaard

Department of Agriculture and Ecology

Zoology group

Trophic interactions

Research needed to understand biological mechanisms guiding outcome of pest management

Interactions of beneficial arthropods with plant and pests

Scales from organism \rightarrow field \rightarrow landscape.

Response to abiotic factors

Effect of climate change on insects –example Agrotis segetum

Temperature -dependent development and activity

Fig. 1 Temperature-dependent predation of Anthocoris nemorum on second instar Brevicoryne brassicae (mean number eaten \pm SE) during 24 h. •: observed predation at a prey density of 25 B. brassicae; \times : observed predation at a prey density of 30 B. brassicae. Line: linear regression based on predation at 12–20°C.

Interactions with prey –example two predators –*Anthocoris nemorum* and *A. nemoralis*

Interactions with plant

Field ecology -Seasonal distribution of predators - and the role of vegetation in the orchard

Inundative releases –why?

Can supplement conservation biological control Lack of / failure of insecticides

Demonstrated that mass-release of *A. nemoralis* nymphs consistently could reduce *Cacopsylla pyri* infestation

Acleris comariana

Experiences from strawberry –integrated biological control of key pests

- •Spider mites and strawberry mites
 - -predatory mites
- •Strawberry weevil –Anthonomus rubi
 - -entomopathogenic fungi,
 - <u>-early warning/ mass trapping</u>
- •Strawberry tortricids -Acleris comariana
 - -Bacillus thuringiensis,
 - <u>-mechanical control</u>
 - -conservation biological control
- •Availability of biocontrol agents can help take-up in small market
- Control in autumn is targeting next year
- -preventive treament -but not all years give problems

biocontrol in some use pyrethroids

pyrethroids

Field and field surroundings

At a landscape scale -increased biodiversity by providing pesticide free buffer zones

Landscape effects on wild bees – strawberry pollination

Ecosystem services

Putting figures on the value of biological control -and the value of pollination

CFE system –combined food energy system

- Biomass hedges and crops
- Crop rotation
- Organic management
- Energy neutral

As diversity increases biocontrol also increases

an numbers (±SE) by the conclusion of the experiment with adult spiders of (A) BPH across instars (white) and small, ized and large BPH nymphs and of adult BPH (increasing shades of grey); and (B) A. formosana (white) and P. pseudoannulata 7). Letters above columns indicate significant (P<0.05) differences among treatments.

Ongoing and new research activities
-Systemic approaches to pest management without pesticides

Fruitgrowth 2011-14 - Novel organic solutions securing future growth -several Danish partners

Softpest Multitrap 2012-14 -Core Organic II

Mass-trappping of insect pests in strawberry and raspberry

Imbicont 2012-15

Inbiosoil 2012-15 -EU FP7

ProGrOV 2011-15

Fruitgrowth -Ecological infrastructures

- Can functional biodiversity contribute to codling moth control?
 - In orchards with or without flower strips assess level of predation and parasitism on codling moth egg cohorts May-June 2012 and May-June 2013
 - Spatial aspects –effect of flower strip and landscape parametres on pest, predator and parasitoid densities (GIS-analysis)

Fruitgrowth -New mass-release methods of Trichogramma

• Can inundative releases with *Trichogramma* spp reduce codling moth density and crop lossess

Cydia pomonella eggs

Trichogramma female

CORE ORGANIC II: Softpest Multitrap 2012-14

Bioforsk Norway, KTH Sweden, KU-LIFE Denmark, EMR + U. Greewich, UK, Agroscope, CH, Latvian Plant Protection Res. C.

A. rubi numbers in 2009

Early warning/ Mass trapping

→A. rubi

--damage

Weevils are observed over 2 weeks before damage (mid May –Early June)

Experiences with pear psyllid

- Pesticide resistance -growers wish to avoid pesticides
- •In small and scattered orchards as the Danish, mass-release of immature *A. nemoralis* yielded consistently good results
- •Immature A. nemoralis not for sale -a few use release of adults
- Mostly growers rely on naturally occurring beneficials also since damaging years cannot be predicted

Conclusion

Use of biological control has been guided by:

- Lack of pesticides
- •Lack of effect of pesticides due to resistance
- Economy
- Societies wishes for better environment and health

To move BC to outdoor crops –what can we do

- •Basic knowledge needed
- •How to handle complex systems
- •Use of multiple beneficials in combinations also with other strategies-
- Contribute to new mindset: no silver bullet

