

Crop rotation and crop management effects on cereal yields in arable organic farming in Denmark

Jørgen E. Olesen, Margrethe Askegaard and Ilse A. Rasmussen

Long-term experiments with arable crop rotations

Experimental factors

Experimental factors (1997-2004):

- Production system (organic with and without grassclover as green manure)
- Catch crops (with: +CC, without: -CC)
- Manure (with: +M, without: -M)

Experimental factors (2005-2008):

Production system (conventional, organic with and without green manure)

• Catch crops (with: +CC, without: -CC)

Manure/fertiliser (with: +M, without: -M)

Experimental treatment combinations (since 2005)

Crop	Production system	-CC	+CC	+CC
rotation		+M	-M	+M
O2	Green manure-cash crop- <u>o</u> rganic	Х	Χ	X
04	Cash crop- <u>o</u> rganic	X	X	X
C4	Cash crop-conventional	X		X

M: animal manure (organic) or mineral fertilizer (conventional).

CC: catch crop, '+' is with catch crop and '-' is without catch crop.

Crop rotations

	Field	O2	O4	C4
1 st course	1	S. barley:ley	Spring oat ^{CC}	
1997-2000	2	Grass-clover	Winter wheat ^{CC}	
	3	Winter wheat ^{cc}	Winter cereal ^{CC,1}	
	4	Pea/barley ^{cc}	Pea/barley ^{cc}	
2 nd course	1	S. barley:ley	Winter wheat ^{CC}	
2001-2004	2	Grass-clover	Spring oat ^{CC}	
	3	Winter wheat ^{cc}	S. barley ^{CC}	
	4	Lupin/barley ^{cc}	Lupin	
3 rd course 2005-2008	1	S. barley:ley	S. barley ^{CC}	S. barley ^{CC}
	2	Grass-clover	Faba bean ^{CC,2}	Faba bean ^{CC,2}
	3	Potato	Potato	Potato
	4	Winter wheat ^{CC,3}	Winter wheat ^{CC,3}	Winter wheat ^{CC,3}

N-fixing catch crops in organic crop rotations (O2 and O4) Non N-fixing catch crops in the conventional rotation (C4)

Nitrogen input in the O2 rotation

Source	S. barley	Grass-clover	Potato	W. wheat	Mean	
Without manure (-M)						
Manure	0	0	0	0	0	
Crop residues	33	343	70	40	122	
Catch crop	0	0	0	78	20	
Total input	33	343	70	118	141	
With manure (+M)						
Manure	61	0	112	107	70	
Crop residues	53	38	90	33	54	
Catch crop	0	0	0	63	16	
Total input	114	38	203	202	139	

Yields (2006-08)

Weeds (% of total biomass at anthesis)

S. barley yield depends on N supply and weeds

Estimates of yield effects from the experimental data

- > Statistical analysis of data:
 - > Effect of ammonium-N in manure on cereal yields
 - > Effect of catch crops (in the rotation)
 - > Effect of grass-clover (as precrop or in the rotation)
 - > Effect of weeds (percent of biomass at anthesis)

Yield responses for winter cereals

	Jyndevad	devad Foulum		Flakkebjerg		erg
Manure (kg DM/kg NH₄-N)	19	***	28	***	17	***
Grass-clover pre-crop (kg DM/ha)	1312	**	626	***	858	***
Grass-clover in rotation (kg DM/ha)	162	NS	600	***	778	***
Catch crop in rotation (kg DM/ha)	37	NS	60	NS	105	NS
Weeds (kg DM/% weed)	-14	**	-66	***	-37	**

Levels of significance: NS: P>0.05, *: 0.05>P>0.01, **: 0.01>P>0.001, **: 0.001>P.

Yield effects of crop rotation and management

Conclusions

- Manure application is the most important factor for enhancing yields in organic crop production
- > Grass-clover and catch crops have both short- and long-term effects on cereal grain yields. This appears higher for grass-clover.
- > Weeds provide a long-term challenge to control in cereal systems
- Yields may be further increased by increase the amount of nitrogen available in manure, e.g. through recycling of grass-clover and catch crops for biogas – and such measures may also provide weed control.

