

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

CADMIUM AND FATTY ACID CONTENTS OF LINSEED IN FINLAND

Hanna-Riitta Kymäläinen

Department of Agrotechnology, University of Helsinki, **Finland**

> 28th June 2007 NJF Conference, Copenhagen

LINSEED AS FUNCTIONAL FOOD

Linseed (*Linum usitatissimum* L.) has several properties with positive effects on human health, e.g.

- Favourable fatty acids
- Proteins
- Dietary fibre

Linseed has industrial interest and applications

- As a functional food
- As an ingredient of functional foods e.g. in the form of oil and seed crush

Despite its numerous advantageous components promoting human health, linseed may also contain some compounds not beneficial to health, including cadmium (Cd) taken up from soil

QUALITY DEVELOPMENT

Several Finnish linseed companies intensified their cooperation during the "Agro fibre network" project during the years 2002-2005
Examples of this cooperation include

- Networking between companies, farmers and universities
- Studies of the cadmium content
- Studies of the fatty acid composition of linseed

AIMS OF THE STUDY

- **1.** To evaluate
 - The cadmium contents of seed and seed crush of linseed
 - The acceptable daily dose of cadmium
- **2.** To illustrate the possible positive substances
 - The fatty acid composition of Finnish linseed samples was screened
- **3.** To compare the Finnish results with results of international studies

MATERIALS AND METHODS

Cadmium determination

- Seed samples (N=85) collected in different locations in Finland in 2002-2004
 - Southern Finland (Siuntio)

Ostrobothnia

- In addition, 15 samples of linseed crush were examined
- AAS method (Atomic absorption spectroscopy)

Fatty acid composition

- 6 samples collected in 2003
- Gas chromatography and mass spectrometry

RESULTS OF CADMIUM CONTENT

The Cd content of the seed samples varied between 0.27 and 1.3 mg kg-1 dry matter
The Cd contents of the crush samples were 56% higher

on average than those of the corresponding seeds

Table 1. Cadmium content of linseed and linseed crush samples in the Finnish study

Sample (N)	Mean (mg kg ⁻¹ dry matter)	Variation range (mg kg ⁻¹ dry matter)
Seed, all (85)	0.62	0.27 - 1.3
Seed, Ostrobothnia (25)	0.48	0.27 - 0.96
Seed, southern Finland (36)	0.67	0.27 - 1.3
Crush (15)	0.85	0.47 - 1.5

AREAL VARIATION IN THE CADMIUM CONTENT OF LINSEED

COMPARISON OF SEED AND CRUSH

VARIATION BETWEEN VARIETIES, YEARS AND LEVELS OF FERTILIZATION

EVALUATION OF THE CADMIUM RESULTS

The cadmium content of Finnish linseed was in general similar to that reported in previous international studies, although there was marked variation both in the present and previous studies

COMPARISON OF FINNISH AND INTERNATIONAL Cd VALUES OF LINSEED

Examined linseed samples	Cd content (dw = dry weight,	Reference	
	fw = fresh weight)		
Yellow	mean 0.23 mg kg ⁻¹	Klein&Weigert (1987)	
Brown	mean 0.38 mg kg ⁻¹	Klein&Weigert (1987)	
118 seed samples and 16	0.10 - 1.70 mg kg⁻¹ (dw)	Marquard et al. (1990)	
genotypes			
14 commercial varieties	0.02 mg kg ⁻¹ - 0.10 mg kg ⁻¹ (fw)	Li et al. (1997)	
60 plant introduction lines	0.14–1.37 mg kg⁻¹ (fw)	Li et al. (1997)	
Cultivars grown under	0.23 and 0.55 mg kg ⁻¹ (dw)	Hocking&McLaughlin	
experimental conditions		(2000)	
Own study: Finnish linseed	0.27-1.30 mg/kg ⁻¹ (dw)	Kymäläinen&Sjöberg	
grown at different locations		(2006)	

ESTIMATED CADMIUM INTAKE

- The dietary recommendation of linseed for adults is a daily dose of 24–30 g (Morris 2003, Tarpila et al. 2004)
- By comparing the Cd values from the present study with the reference values, the estimated daily intake (EDI) of Cd is
 - 6.5–39 µg Cd (seed)
 - 11–45 µg Cd (crush)
- These values are
 - 9.3–55% (seed)
 - 14–63% (crush)

of the provisional tolerable daily intake (PTDI) value (70 μ g/d) presented by WHO and FAO (1993)

PERMITTED CADMIUM INTAKE

Examples of estimated daily intakes (EDI) of Cd in food

- Finnish maximum: 11 μg (Tahvonen 1995)
- French: 17 μg (Leblanc et al. 2000)
- High (polluted area): 40 μg (Skibniewska 2003)
- Taking into account the provisional tolerable daily intake (PTDI) value (70 µg/d) of Cd presented by WHO and FAO (1993), if we injest Cd from linseed in addition to this basal EDI in food (11–40 µg), the possible additional daily intake of Cd (from other sources than food) would be 30–60 µg
- The permitted intake of linseed depends on body weight and on the Cd content of the product

Estimated average intake of linseed for persons with different body masses, when linseed is considered as an additional source of cadmium

According to this study, in most cases the dietary recommendation can safely be followed from the point of view of cadmium intake

Estimated average intake of linseed crush for persons with different body masses, when linseed is considered as an additional source of cadmium

In the case of a relatively low body weight (50 kg) the limit is rather close if linseed with a high Cd content is used

FATTY ACID COMPOSITION

The content of α-linolenic acid of the Finnish samples was among the highest compared with results from several international studies (reference value 57.0 %, Morris 2003)

Table 2. Main fatty acid composition of linseed collected in Finland, presented as means of 2 measurements

Fatty acid (%)	Variety of linseed		
	Helmi	Laser	Bor line
C16:0 (palmitic acid)	4.3	4.1	4.1
C18:0 (stearic acid)	2.7	3.1	3.0
C18:1 (oleic acid)	19.0	17.0	20.0
C18:2 (linoleic acid)	16.1	15.6	17.4
C18:3 (α-linolenic acid)	57.3	59.6	54.9
Saturated fatty acids	7.0	7.2	7.1
Mono-unsaturated fatty acids	19.5	17.4	20.5
Poly-unsaturated fatty acids	73.5	75.3	72.4

EVALUATION OF THE FATTY ACID COMPOSITION

- The composition of fatty acids, especially unsaturated fatty acids, reported in different studies varies considerably
- This variation depends mainly on differences in the examined varieties and in industrial processing treatments

ACKNOWLEDGEMENTS

Minna Nykter, Fred Gates, Hanna Kinnunen, Ari Klemola, Eero Lamminen, Anna-Maija Sjöberg / University of Helsinki

Aija Kortesmaa / Palmenia

- The Finnish linseed companies Elixi Oil Oy, Oy Linseed Protein Finland Ltd, Neomed Oy and Sini-Pellava Oy
- Agro Fibre Network project in the EMOTR/ALMA program

ADDITIONAL INFORMATION OF THE STUDY

For more detailed information

- Kymäläinen, H.-R & Sjöberg, A.-M. 2006. Cadmium content of linseed and estimated consumer intake. Agricultural and Food Science 15, 1: 3-11.
- Nykter, M., Kymäläinen, H.-R., Gates, F. & Sjöberg, A.-M. 2006. Quality characteristics of edible linseed oil. Agricultural and Food Science 15, 4: 402-413.

